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Abstract. It is shown that for every integer n the (2n + 1)th power of any locally
path-connected metrizable space of the first Baire category is .A; [n]-universal, i.e., contains
a closed topological copy of each at most n-dimensional metrizable o-compact space. Also
a one-dimensional o-compact absolute retract X is found such that the power X" is
Aj[n]-universal for every n.

A topological space X is called C-universal, where C is a class of spaces,
if X contains a closed topological copy of each space C' € C. We denote by
Mo, My, and A; the classes of metrizable compacta, Polish spaces, and
metrizable o-compact spaces, respectively. For a class C of spaces we denote
by C[n] the subclass of C consisting of all spaces C' € C with dimC < n.

In terms of universality, the classical Menger—Nobeling—Pontryagin—
Lefschetz Theorem states that the cube [0,1]?"*1 is Mg[n]-universal for
every n > 0. It is well known that the exponent 2n 4 1 in this theorem is
the best possible: the Menger universal compactum p,, cannot be embedded
into [0, 1]2". Nonetheless, P. Bowers [Bo] has proved that the (n+1)th power
D"+ of any dendrite D with dense set of end-points is M g[n]-universal for
every non-negative integer n. Moreover, every such dendrite D contains a
connected Gs-subset G whose (n + 1)th power G™*! is M [n]-universal for
every n (see [Bo]). Actually, these results of Bowers’ are particular cases of a
more general fact proved in [BCTZ]: for any locally connected Polish space X
without free arcs the power X" 1 is Mg[n]-universal; moreover, if the space
X is nowhere locally compact, then the power X" *! is M [n]-universal.

Taking into account that Mg and M are the first classes in the Borel
hierarchy it is natural to ask the following

QUESTION. Suppose C is a Borel class. Is there a one-dimensional abso-
lute retract X € C whose (n + 1)th power X"+ is C[n]-universal for every
integer n > 07
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According to the above-mentioned results of [Bo] or [BCTZ] the an-
swer to this question is affirmative for the multiplicative Borel classes M
and M;. In this paper we show that the same is true for the additive Borel
class A;.

THEOREM 1. If X is a metrizable locally path-connected space of first
Buaire category, then the space X"t is Ai[n]-universal for every integer
n > 0.

THEOREM 2. There exists a one-dimensional o-compact absolute retract
A whose power A"t is Ay[n]-universal for every integer n > 0. Moreover,
such a space A can be found in every dendrite with dense set of end-points.

The exponents 2n+1 and n+1 in Theorems 1 and 2 are the best possible:
the Menger universal compactum p,, admits no embedding into X?" if X is
a countable union of arcs, while the n-sphere S™ admits no embedding into
the nth power of a one-dimensional space.

Observe also a difference between our results and Bowers’. While Bowers’
results have infinite-dimensional counterparts (there exists a Polish (resp.
compact) one-dimensional absolute retract whose countable power is M-
universal (resp. My-universal)), that is not true for Theorems 1 and 2: no
finite-dimensional space has .4;-universal countable power [BC].

To prove Theorems 1 and 2 we shall apply some well known infinite-
dimensional techniques adapted to our finite-dimensional needs. First we
recall some definitions and notations. All spaces considered in this paper are
metrizable and separable, all maps are continuous. By I we denote the closed
interval [0,1]; the letters n,m, k,7,j denote non-negative integer numbers.
For a space X let cov(X) denote the set of all open covers of X. We write
V <U for V,U € cov(X) if for every V € V there is U € U with V C U. For
a cover U € cov(X) we set St(U) = {St(U,U) : U € U}, where St(A,U) =
U{U el :UNA#Q} for a subset A C X. Also St2(U) = St(St(U)). We
say that two maps f,g: Y — X are U-near (denoted by (f,g) < U) if for
every y € Y there is U € U with {f(y),9(y)} C U.

A subset A of a space X is called a Z,,-set in X, n being a non-negative
integer, if A is closed in X and for every map f : I™ — X and every cover
U € cov(X) there exists a map ¢g : [” — X such that (g,f) < U and
g(I"yN A =10. A subset A C X is called a Z-set in X if A is a Z,-set
in X for every n € N. A space X is defined to be a 0Z,,-space if X can be
written as a countable union X = Ufil A;, where each A; is a Z,-set in X.
Observe that a subset A C X is a Zy-set in X if and only if A is closed and
nowhere dense in X, and a space X is a 0 Zy-space if and only if X is of first
Baire category. The property of Z,-sets described in the subsequent lemma
is well known for n = oo (see [Mi, §7.2]) and can be proved by analogy.
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LEMMA 1. If A is a Z,-set in an absolute retract X, then for any map
f: K — X of a compactum K with dim K < n, any closed subset Ky C K,
and any cover U € cov(X) there exists a map g: K — X such that g|Ky =
f1Ko, (9, f) = U, and g(K \ Ko) C X \ A.

The following lemma was proved in [BT].

LEMMA 2. If X is an absolute retract of first Baire category, then X" t1
is a o Zy-space for every integer n > 0.

We recall that a space X has the disjoint n-cells property if for every
cover U € cov(X) and every map f : I™ x {0,1} — X there exists a map
g: 1" x{0,1} — X such that (g, f) <U and g(I"™ x {0}) Ng(I™ x {1}) = 0.
The following lemmas are proved in [BT] and [Bo], respectively.

LEMMA 3. If X is a non-degenerate absolute retract, then X*"+1 has
the disjoint n-cells property for every n > 0.

LEMMA 4. If X is a dendrite with dense set of end-points, then X"*+!
satisfies the disjoint n-cells property for every n > 0.

Our next lemma is well known and can be proven by standard methods
(see [Mi, §7.3]).

LEMMA 5. If a Polish ANR X has the disjoint n-cells property for some
integer n > 0, then it has the following stronger property:

(SUy,)  for any open set U C X, any open cover U € cov(U), and any
perfect map f : K — U from an at most n-dimensional locally
compact space K there exists a closed embedding g : K — U such
that (f,g) <U.

Recall that a map f : X — Y is called perfect if f is closed and f~1(y)
is compact for every y € Y.
We shall need the following easy modification of Lemma 5.4 of [DMM].

LEMMA 6. An absolute retract X is Aj[n]-universal for some integer
n > 0 provided X is a 0Z,-space with property (SU,).

Next, we consider the question of when a countable union of spaces
with (SU,,) satisfies that property. We say that a tower X; C Xy C --- of
subsets of a space X has the mapping absorption property for n-dimensional
compacta if for any cover U € cov(X), any closed subset K of a compactum
K with dim(K) < n, and any map f : K — X with f(Ky) C X; for some i,
there exists a map g : K — X for some j > i such that (g, f) < U and
9|Ko = f|Ko.

LEMMA 7. A tower X1 C Xo C -+ of subsets of a space X has the
mapping absorption property for n-dimensional compacta, n being a non-
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negative integer, provided there exists a sequence of retractions r; : X — X,
1 € N, converging to the identity map of X uniformly on compacta.

The proof of this lemma is easy and left to the reader.

LEMMA 8. Suppose X1 C Xo C --- is a tower of subsets of an absolute
retract X. If for some integer n > 0 this tower has the mapping absorption
property for n-dimensional compacta and each space X; has property (SU,,),
then the space X has this property as well.

Proof. To show that the space X has (SU,,), fix an open set U C X,
a cover U € cov(U), and a perfect map f : K — U of an at most n-
dimensional locally compact space K. Observe that the tower (X; NU)$2,
in U has the mapping absorption property for n-dimensional compacta and
each space X; N U has property (SU,). So, without loss of generality, we
may assume that U = X.

We may also assume U to be so fine that every map g : K — U that
is U-near to f is perfect (see [Ch, 4.1]). Thus to prove Lemma 8, it suf-
fices to construct an injective map g : K — X with (g, f) < U. By the
paracompactness of X, there is a cover V € cov(X) such that St?(V) < U.

Write K = (J;~, K;, where each K; is a compactum lying in the interior
K., of K,y1 in K. Using the mapping absorption property of the tower
(X;), by the standard approximation procedure (see, e.g., [BP, IV.§2]), con-
struct a map fy : K — X such that (fo, f) <V and for every i € N there
is j € N with fo(K;) C Xj. Since (fo, f) <V < U, the map fy is perfect
and thus fo(K) is a closed locally compact subset in X (see [En, 3.7.21]).
Observe that the subset fo(K) C X has the following property: every point
z € fo(K) has a neighborhood W C fy(K) such that W C X; for some j.
Indeed, since fy is a perfect map, the preimage f; 1(:17) C K is compact and
as such, lies in some K;. Since the map fj is closed, W = fo(K)\ fo(K\K?, )
is an open neighborhood of z in fo(K). Clearly, W C fo(K;y1) C X, for
some j.

Consequently, fo(K) = U;-, Wi, where

Wi ={x € fo(K) : X; N fo(K) is a neighborhood of = in fo(K)}.

Evidently, each set W; is open in the locally compact space fo(K). Hence,
we may select a tower ) = Ly C L1 C Ly C -+ of compact subsets of fo(K)
such that fo(K) = ;2 L; and for every i € N the set L; lies in W; as well as
in the interior L¢,  of L;+1 in fo(K). Let M; = f5 ' (Lg) and M; = oM (Ly)
for every i. Clearly, M; are open and ]\Z are compact sets in K. To produce
the required injective map g : K — X, we shall inductively construct maps
fi : K — X, i € N, satisfying the following conditions:

(1) fi|AZ—1U(K\Mi+1) = fi—1|M—1U(K\Mi+1)§
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(2)  filMi41) C Xigas
(3)  fi is injective on M;;
(4)  filMig1) O fi( K\ Miyq) = 0;
5)  (fis ficr) =V,

Assume that for some £ > 1 the maps f;, ¢ < k, have been con-
structed. By (1), fx—1|K \ My = fo| K \ My, and thus fr_1(Mi41 \ M) =
Jo(Myy1 \ My) C Ly C Xgq1. Together with (2) this yields fr—1(Mpy1)

C Xgy1. Let F = fkfl\(/Mkfl U (K \ My41)). By (1), F = fr—1(My_1) U
Jo(K\ Myy1) = fro—1(My—1) U (fo(K) \ L}, ,), i-e., F'is a closed set in X,
Consequently, X;11 \ F' is an open set in Xy 1. It follows from (2)-(4) that
Je—1 (M1 \ My—1) C Xjg1 \ F. Clearly, the map fr_1|Mys1 \ My_; :
M1 \ Mi_1 — Xii1 \ F is perfect. Since the space Xy, has property
(SU,,), we may select a closed embedding e : My1 \ Mk,l — Xp+1 \ F so
near to fr_1|Mgy1 \ Mk_l that the map f% : K — X defined by

fro1(z) ifxe Mg_qU(K\ Mgy1),

is continuous and V-near to fr_;. It is easy to verify that the map fj so
defined satisfies conditions (1)—(5).

Letting g = lim; ., f; : K — X we see that g is an injective continuous
map with (g, fo) < St(V). Since (fo, f) <V, we get (g, f) < St?(V) <U. m

Lemmas 5, 6, and 8 immediately imply

LEMMA 9. An absolute retract X is Aj[n|-universal for some integer
n > 0 provided X is a 0Z,-space containing a tower X1 C Xo C --- having
the mapping absorption property for n-dimensional compacta and consisting
of Polish ANR’s X; with the disjoint n-cells property.

We shall apply this lemma to establish the .A;[n]-universality of finite
powers of certain subsets of dendrites. Let D be a dendrite, i.e., a non-
degenerate uniquely arcwise connected Peano continuum (equivalently,
a compact one-dimensional absolute retract). By the order of a point x € D
we understand the number of connected components of D\ {z}. Points of or-
der 1 in D are called end-points of D. For points x,y € D we denote by [z, y]
the unique arc in D with end-points z,y. Also we set (z,y) = [z,y] \ {z,y}.
We remark that each subcontinuum A of D is a retract of D; moreover,
there is a canonical retraction r4 of D onto A such that for every x € D,
[z,74(x)] is an irreducible arc between x and A. If A; C A2 C --- is a tower
of subcontinua in D such that |J;~, A; is dense in D, then the function
sequence (74,)2, converges uniformly to the identity map of D.
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LEMMA 10. If D is a dendrite with dense set E of end-points, then the
space (D \ E)*"*1 is Ay [n]-universal for every integer n > 0.

Proof. Fix any integer n > 0. It is easy to see that the space X = D\ E
is a o-compact absolute retract of first Baire category. By Lemma 2, the
power X2 is a 0Z,-space. Let (4;)$2; C X be an increasing sequence of
non-degenerate subcontinua in D such that Ufil A; is dense in D. Each A;,
being a retract of D, is an absolute retract. As we said, the sequence (7 4,)72
of retractions converges uniformly to the identity map of D. This implies
that the sequence {ri’j“ . D2l A2 of retractions converges
uniformly to the identity map of D?"*!. By Lemma 7, the tower (A7" )22,
in X271 has the mapping absorption property for n-dimensional compacta.
By Lemma 3, each A?”H is a compact absolute retract with the disjoint
n-cells property. Applying Lemma 9, we deduce that the space X271 =
(D \ E)*"*1is A;[n]-universal. m

Proof of Theorem 1. Let D be a dendrite such that the set E of end-
points of D is dense in D and each point € D has order < 3. Let X = D\ E.
Theorem 1 trivially follows from Lemma 10 and

LEMMA 11. Every locally path-connected space Y of first Baire category
contains a closed topological copy of the space X = D \ E.

Proof. Let d be any metric on Y and let Z be the completion of Y
with respect to this metric. It suffices to construct a continuous function
¢ : D — Z such that = 1(Y) = X and ¢|X is injective.

Write Y = (2, Y, where (Y,,)22; is an increasing sequence of closed
nowhere dense subsets of Y. Fix any point p € X of order 2 in D and choose
a sequence (z,)22; of points of X such that X = |, [p, zy]. Inductively,
we shall construct two sequences (X, )22, and (X])52; of trees in X as
follows. Let X1 = [po,p1], X] = [p(,P}], where the points po, p1,py,p) are
chosen so that [p,xz1] C (pp,p)) C [Py, Pyl C (po,p1). Assuming that X,
and X have been constructed, choose points p,1,p},,; in X \ X,, so that
[P, 2p11] C [P Phy1) C [Py Phga] C [P, Ptr)- Let X7y = X5, U p, pl, 4] and
Xn+1 = X, U[p, pn1]. Because the dendrite D contains at most countably
many points of order > 2, we may suppose that all points p/, have order 2
in D.

Let M,, denote the set of points y € D such that p, € [p,y). Clearly,
M,, is open in D and M,, = M, U {p,}.

Let T;, be the (finite) set of all points of X/, of order 3 in X,,. We have
T, C T,y for every n. For every n fix a subset S, C X/ consisting of
points of order 2 in D such that S, D {p{,...,p,}US,_1 and the following
condition is satisfied for the set R,, =T,, U S,,:

(1) diam(L) < 1/n for every connected component L of X! \ R,.
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We are going to inductively construct continuous functions ¢,, : D — Y and
real numbers ¢, > 0 so that the following conditions are satisfied for every
neN:

(2
3

d(@nsPni1) <277
©n| Xy is an embedding;

Pn = Sgn °Tx,; _
ont1(L) = ¢n(L) for every k < n and every component L of
X\ Rt

(6)  d(en(My),Yy) > (14 1/n)cy for every k < n.

Since Y7 is nowhere dense in Y and Y is locally path-connected, Y con-
tains an arc J; with an end-point y; € Y7. Let 1| X; be any homeomorphism
of X7 onto Jy such that ¢ (p1) = y1. Define @1 by letting 1 = (¢1]|X71)orx,
and put ¢; = 1d(y1,Y1) > 0. Evidently, conditions (3), (4) and (6) are sat-
isfied.

Suppose we have constructed o, ck, 1 < k < n, for some n > 1. Consider
the point g,41 € X,, such that [¢n41,pn+1] is the irreducible arc between
X, and pp41. Since p;, ; & X,,, we have ¢,41 € [p,p;, ;). We claim that
Gni1 € R, =T, US,. Indeed, notice first that g, 11 is not of order 3 in X,
(otherwise it would be of order > 4 in D). Consequently, ¢,+1 € Tp,. If ¢ni1
is of order 2 in X, then it is of order 3 in D and thus ¢,11 € S,. Finally,
if ¢4 is of order 1 in X,,, then ¢,4+1 = p; for some i < n. We claim that
Gn+1 = p;i € X],. Otherwise, by the construction of X/, we would have i < n
and [p,p;| C [p,p;) C X, for some j € {i +1,...,n}, which would imply
that p; = ¢n41 is not of order 1 in X,,. Since S,, C X/, we have ¢, 11 &€ S.

If g,+1 € X/, denote by Lg the component of X! \ R,, containing ¢, 11;
if gn41 & X, let Ly be the component of X, \ X/ containing g,1. We
distinguish between two cases:

W
==

(
(
(5

(a)  @gny1 is of order two in X,,. Then Ly contains an arc A = [u,r] such
that A° = (u,r) is an open neighborhood of ¢,,4+1 in X,,.

(b)  There exists ¢ € {0,...,n} such that g,1+1 = p; is of order one in X,,.
Then Ly contains an arc A = [u, ¢,+1] such that A° = (u, ¢y+1] is an
open neighborhood of ¢,11 in X,,.

Let @ = min{2™",(1/n — 1/(n + 1)) minj<gx<p ¢} > 0. Without loss of
generality, we may assume that
(7)  diame,(A4) < 3a.

Since Y is of first Baire category, ¢, (X,) is nowhere dense in Y. Then
the local path-connectedness of Y allows us to find an arc B C Y with
end-points ¢, (¢p+1) and yp11 € Y1 U, (X,) such that

(8)  diam B < g min{a, d(¢n(gn+1), on(Xn \ 4°))}.



8 T. BANAKH AND R. CAUTY

Let B" = [yn+1,2n+1] be an irreducible subarc of B between y,, 1 and
©n(Xy). Define an embedding ¢, ; of X,41 into ¢,(X,) U B" C Y as
follows. Let ¢, 1| Xy \ A° = | X, \ A°. In case (a), AU [gn+1,Pn+1) and
¢©n(A) U B’ are triodes and we can extend ¢/, ; to an embedding of X,
so that o), 1(A) = ¢,(A) and ¢}, 1 ([¢nt1,Pny1]) = B'. In case (b), let A’
be the subarc of ¢, (A) with end-points ¢, (u) and z,41. We extend ¢},
onto Xp1 so that o5, 1 [(AU [gny1,Ppt1]) = AU B

Let ¢n41 =@ 107x,,,- Since X,, C X, 41, we have ry, =rx, orx, .,
and if 11 (2) # @n(x), then rx, . (x) € AU[gn41, Pn+1), and consequently,
both points ¢, (x) and ¢,11(z) belong to the set ¢,(A) U B’ which has
diameter < a < 27" according to (7) and (8). Thus (2) follows.

Let cpyp1 = %d(yn+]_7}_/n+]_) > 0.If 2 € M., then "X (T) = Pr1
and hence @, 1(x) = yn 41 satisfies d(pp11(2), Y1) > (1+1/(n+1))cpi1-
Let k < nand let x € My. If 0,41(2) = (), then d(@,.1(z), Vi) >
(14 1/n)ck, and if @,11(z) # @n(z), then

A(pn41(2), Vi) = d(en (@), Yi) — d(@n(2), oni1(2))

> 1—|—1 1 1 1+ L
— Cr. — —_ — CL. = CL.
- n k n n—+1 k n+1 k

Let k < n and L be a component of X} \ Ry. Using the fact that R, contains
the points p;, 0 < j <k, and is contained in R,, it is easy to show that
either LN Ly = ) or Ly C L. In both cases, the construction of the map
©ny1 guarantees that ¢, 41 (L) = ox(L).

According to (2) the sequence (p,,) converges uniformly to a continuous
map ¢ : D — Z. Let x,2’ be two distinct points of X. Since X = |J,—_, X,
condition (1) allows us to find an integer m and components L and L’ of
X! \ Ry, such that * € L, 2’ € I/ and LN L = (). Tt follows from (5)
that p(x) € v, (L) and ¢(z') € o, (L'). By (3), the sets ¢,, (L) and ¢, (L)
are disjoint and hence p(z) # p(z’) and ¢|X is injective. The preceding
arguments also give p(X) C Y.

Let z € E. The equality [p,z) = U,—,(X,, N [p,x)) implies the exis-
tence of infinitely many indices nj such that x € M,, . For every such ny,
(6) implies d(¢(z),Y ,,) > cn, > 0. Since the sequence (Y,,) is increasing,
o(@) €U, _, Y, DY. This yields o ' (Y) = X. u

Proof of Theorem 2. Let D be a dendrite with dense set E of end-points.
It is not difficult to construct an increasing sequence (D;)?2; of nowhere
dense subdendrites in D such that the union A = |J;2, D; is dense in D
and each dendrite D; has dense set of end-points. The space A, being a
connected subspace of D, is an absolute retract. Since each D; is nowhere
dense in D, A is an absolute retract of first Baire category. We claim that
the power A"t is A;[n]-universal for every integer n > 0.
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Fix any integer n > 0. By Lemma 2, the power A"*! is a 0Z,-space
and by Lemma 4, each Df“ is a compact absolute retract with the disjoint
n-cells property. Similarly to the proof of Lemma 10, it can be verified that
the tower D?“ C D;“H C ... C A" has the mapping absorption property
for n-dimensional compacta. Therefore it is legitimate to apply Lemma 9 to
conclude that the space A"t is A;[n]-universal. m
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