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Abstract. It is shown that for every integer n the (2n + 1)th power of any locally
path-connected metrizable space of the first Baire category isA1[n]-universal, i.e., contains
a closed topological copy of each at most n-dimensional metrizable σ-compact space. Also
a one-dimensional σ-compact absolute retract X is found such that the power Xn+1 is
A1[n]-universal for every n.

A topological space X is called C-universal , where C is a class of spaces,
if X contains a closed topological copy of each space C ∈ C. We denote by
M0, M1, and A1 the classes of metrizable compacta, Polish spaces, and
metrizable σ-compact spaces, respectively. For a class C of spaces we denote
by C[n] the subclass of C consisting of all spaces C ∈ C with dimC ≤ n.

In terms of universality, the classical Menger–Nöbeling–Pontryagin–
Lefschetz Theorem states that the cube [0, 1]2n+1 is M0[n]-universal for
every n ≥ 0. It is well known that the exponent 2n + 1 in this theorem is
the best possible: the Menger universal compactum µn cannot be embedded
into [0, 1]2n. Nonetheless, P. Bowers [Bo] has proved that the (n+1)th power
Dn+1 of any dendrite D with dense set of end-points isM0[n]-universal for
every non-negative integer n. Moreover, every such dendrite D contains a
connected Gδ-subset G whose (n+ 1)th power Gn+1 is M1[n]-universal for
every n (see [Bo]). Actually, these results of Bowers’ are particular cases of a
more general fact proved in [BCTZ]: for any locally connected Polish spaceX
without free arcs the power Xn+1 isM0[n]-universal; moreover, if the space
X is nowhere locally compact, then the power Xn+1 is M1[n]-universal.

Taking into account that M0 and M1 are the first classes in the Borel
hierarchy it is natural to ask the following

Question. Suppose C is a Borel class. Is there a one-dimensional abso-
lute retract X ∈ C whose (n+ 1)th power Xn+1 is C[n]-universal for every
integer n ≥ 0?
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According to the above-mentioned results of [Bo] or [BCTZ] the an-
swer to this question is affirmative for the multiplicative Borel classes M0

andM1. In this paper we show that the same is true for the additive Borel
class A1.

Theorem 1. If X is a metrizable locally path-connected space of first
Baire category , then the space X2n+1 is A1[n]-universal for every integer
n ≥ 0.

Theorem 2. There exists a one-dimensional σ-compact absolute retract
A whose power An+1 is A1[n]-universal for every integer n ≥ 0. Moreover ,
such a space A can be found in every dendrite with dense set of end-points.

The exponents 2n+1 and n+1 in Theorems 1 and 2 are the best possible:
the Menger universal compactum µn admits no embedding into X2n if X is
a countable union of arcs, while the n-sphere Sn admits no embedding into
the nth power of a one-dimensional space.

Observe also a difference between our results and Bowers’. While Bowers’
results have infinite-dimensional counterparts (there exists a Polish (resp.
compact) one-dimensional absolute retract whose countable power is M1-
universal (resp. M0-universal)), that is not true for Theorems 1 and 2: no
finite-dimensional space has A1-universal countable power [BC].

To prove Theorems 1 and 2 we shall apply some well known infinite-
dimensional techniques adapted to our finite-dimensional needs. First we
recall some definitions and notations. All spaces considered in this paper are
metrizable and separable, all maps are continuous. By I we denote the closed
interval [0, 1]; the letters n,m, k, i, j denote non-negative integer numbers.
For a space X let cov(X) denote the set of all open covers of X. We write
V ≺ U for V,U ∈ cov(X) if for every V ∈ V there is U ∈ U with V ⊂ U . For
a cover U ∈ cov(X) we set St(U) = {St(U,U) : U ∈ U}, where St(A,U) =⋃{U ∈ U : U ∩ A 6= ∅} for a subset A ⊂ X. Also St2(U) = St(St(U)). We
say that two maps f, g : Y → X are U-near (denoted by (f, g) ≺ U) if for
every y ∈ Y there is U ∈ U with {f(y), g(y)} ⊂ U .

A subset A of a space X is called a Zn-set in X, n being a non-negative
integer, if A is closed in X and for every map f : In → X and every cover
U ∈ cov(X) there exists a map g : In → X such that (g, f) ≺ U and
g(In) ∩ A = ∅. A subset A ⊂ X is called a Z∞-set in X if A is a Zn-set
in X for every n ∈ N. A space X is defined to be a σZn-space if X can be
written as a countable union X =

⋃∞
i=1Ai, where each Ai is a Zn-set in X.

Observe that a subset A ⊂ X is a Z0-set in X if and only if A is closed and
nowhere dense in X, and a space X is a σZ0-space if and only if X is of first
Baire category. The property of Zn-sets described in the subsequent lemma
is well known for n =∞ (see [Mi, §7.2]) and can be proved by analogy.
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Lemma 1. If A is a Zn-set in an absolute retract X, then for any map
f : K → X of a compactum K with dimK ≤ n, any closed subset K0 ⊂ K,
and any cover U ∈ cov(X) there exists a map g : K → X such that g|K0 =
f |K0, (g, f) ≺ U , and g(K \K0) ⊂ X \ A.

The following lemma was proved in [BT].

Lemma 2. If X is an absolute retract of first Baire category , then Xn+1

is a σZn-space for every integer n ≥ 0.

We recall that a space X has the disjoint n-cells property if for every
cover U ∈ cov(X) and every map f : In × {0, 1} → X there exists a map
g : In×{0, 1} → X such that (g, f) ≺ U and g(In ×{0})∩ g(In ×{1}) = ∅.
The following lemmas are proved in [BT] and [Bo], respectively.

Lemma 3. If X is a non-degenerate absolute retract , then X 2n+1 has
the disjoint n-cells property for every n ≥ 0.

Lemma 4. If X is a dendrite with dense set of end-points, then Xn+1

satisfies the disjoint n-cells property for every n ≥ 0.

Our next lemma is well known and can be proven by standard methods
(see [Mi, §7.3]).

Lemma 5. If a Polish ANR X has the disjoint n-cells property for some
integer n ≥ 0, then it has the following stronger property :

(SUn) for any open set U ⊂ X, any open cover U ∈ cov(U), and any
perfect map f : K → U from an at most n-dimensional locally
compact space K there exists a closed embedding g : K → U such
that (f, g) ≺ U .

Recall that a map f : X → Y is called perfect if f is closed and f−1(y)
is compact for every y ∈ Y .

We shall need the following easy modification of Lemma 5.4 of [DMM].

Lemma 6. An absolute retract X is A1[n]-universal for some integer
n ≥ 0 provided X is a σZn-space with property (SUn).

Next, we consider the question of when a countable union of spaces
with (SUn) satisfies that property. We say that a tower X1 ⊂ X2 ⊂ · · · of
subsets of a space X has the mapping absorption property for n-dimensional
compacta if for any cover U ∈ cov(X), any closed subset K0 of a compactum
K with dim(K) ≤ n, and any map f : K → X with f(K0) ⊂ Xi for some i,
there exists a map g : K → Xj for some j ≥ i such that (g, f) ≺ U and
g|K0 = f |K0.

Lemma 7. A tower X1 ⊂ X2 ⊂ · · · of subsets of a space X has the
mapping absorption property for n-dimensional compacta, n being a non-
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negative integer , provided there exists a sequence of retractions ri : X → Xi,
i ∈ N, converging to the identity map of X uniformly on compacta.

The proof of this lemma is easy and left to the reader.

Lemma 8. Suppose X1 ⊂ X2 ⊂ · · · is a tower of subsets of an absolute
retract X. If for some integer n ≥ 0 this tower has the mapping absorption
property for n-dimensional compacta and each space Xi has property (SUn),
then the space X has this property as well.

Proof. To show that the space X has (SUn), fix an open set U ⊂ X,
a cover U ∈ cov(U), and a perfect map f : K → U of an at most n-
dimensional locally compact space K. Observe that the tower (Xi ∩ U)∞i=1
in U has the mapping absorption property for n-dimensional compacta and
each space Xi ∩ U has property (SUn). So, without loss of generality, we
may assume that U = X.

We may also assume U to be so fine that every map g : K → U that
is U -near to f is perfect (see [Ch, 4.1]). Thus to prove Lemma 8, it suf-
fices to construct an injective map g : K → X with (g, f) ≺ U . By the
paracompactness of X, there is a cover V ∈ cov(X) such that St2(V) ≺ U .

Write K =
⋃∞
i=1 Ki, where each Ki is a compactum lying in the interior

K◦n+1 of Kn+1 in K. Using the mapping absorption property of the tower
(Xi), by the standard approximation procedure (see, e.g., [BP, IV.§2]), con-
struct a map f0 : K → X such that (f0, f) ≺ V and for every i ∈ N there
is j ∈ N with f0(Ki) ⊂ Xj . Since (f0, f) ≺ V ≺ U , the map f0 is perfect
and thus f0(K) is a closed locally compact subset in X (see [En, 3.7.21]).
Observe that the subset f0(K) ⊂ X has the following property: every point
x ∈ f0(K) has a neighborhood W ⊂ f0(K) such that W ⊂ Xj for some j.
Indeed, since f0 is a perfect map, the preimage f−1

0 (x) ⊂ K is compact and
as such, lies in some Ki. Since the map f0 is closed, W = f0(K)\f0(K\K◦i+1)
is an open neighborhood of x in f0(K). Clearly, W ⊂ f0(Ki+1) ⊂ Xj for
some j.

Consequently, f0(K) =
⋃∞
i=0 Wi, where

Wi = {x ∈ f0(K) : Xi ∩ f0(K) is a neighborhood of x in f0(K)}.
Evidently, each set Wi is open in the locally compact space f0(K). Hence,
we may select a tower ∅ = L0 ⊂ L1 ⊂ L2 ⊂ · · · of compact subsets of f0(K)
such that f0(K) =

⋃∞
i=1 Li and for every i ∈ N the set Li lies in Wi as well as

in the interior L◦i+1 of Li+1 in f0(K). Let Mi = f−1
0 (L◦i ) and M̃i = f−1

0 (Li)
for every i. Clearly, Mi are open and M̃i are compact sets in K. To produce
the required injective map g : K → X, we shall inductively construct maps
fi : K → X, i ∈ N, satisfying the following conditions:

(1) fi|M̃i−1 ∪ (K \Mi+1) = fi−1|M̃i−1 ∪ (K \Mi+1);
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(2) fi(M̃i+1) ⊂ Xi+1;
(3) fi is injective on M̃i;
(4) fi(Mi+1) ∩ fi(K \Mi+1) = ∅;
(5) (fi, fi−1) ≺ V.

Assume that for some k ≥ 1 the maps fi, i < k, have been con-
structed. By (1), fk−1|K \Mk = f0|K \Mk and thus fk−1(Mk+1 \Mk) =
f0(Mk+1 \Mk) ⊂ L◦k+1 ⊂ Xk+1. Together with (2) this yields fk−1(Mk+1)

⊂ Xk+1. Let F = fk−1(M̃k−1 ∪ (K \Mk+1)). By (1), F = fk−1(M̃k−1) ∪
f0(K \Mk+1) = fk−1(M̃k−1) ∪ (f0(K) \ L◦k+1), i.e., F is a closed set in X.
Consequently, Xk+1 \ F is an open set in Xk+1. It follows from (2)–(4) that
fk−1(Mk+1 \ M̃k−1) ⊂ Xk+1 \ F . Clearly, the map fk−1|Mk+1 \ M̃k−1 :
Mk+1 \ M̃k−1 → Xk+1 \ F is perfect. Since the space Xk+1 has property

(SUn), we may select a closed embedding e : Mk+1 \ M̃k−1 → Xk+1 \ F so
near to fk−1|Mk+1 \ M̃k−1 that the map fk : K → X defined by

fk(x) =

{
e(x) if x ∈Mk+1 \ M̃k−1,

fk−1(x) if x ∈ M̃k−1 ∪ (K \Mk+1),

is continuous and V-near to fk−1. It is easy to verify that the map fk so
defined satisfies conditions (1)–(5).

Letting g = limi→∞ fi : K → X we see that g is an injective continuous
map with (g, f0) ≺ St(V). Since (f0, f) ≺ V, we get (g, f) ≺ St2(V) ≺ U .

Lemmas 5, 6, and 8 immediately imply

Lemma 9. An absolute retract X is A1[n]-universal for some integer
n ≥ 0 provided X is a σZn-space containing a tower X1 ⊂ X2 ⊂ · · · having
the mapping absorption property for n-dimensional compacta and consisting
of Polish ANR’s Xi with the disjoint n-cells property.

We shall apply this lemma to establish the A1[n]-universality of finite
powers of certain subsets of dendrites. Let D be a dendrite, i.e., a non-
degenerate uniquely arcwise connected Peano continuum (equivalently,
a compact one-dimensional absolute retract). By the order of a point x ∈ D
we understand the number of connected components of D\{x}. Points of or-
der 1 in D are called end-points of D. For points x, y ∈ D we denote by [x, y]
the unique arc in D with end-points x, y. Also we set (x, y) = [x, y] \ {x, y}.
We remark that each subcontinuum A of D is a retract of D; moreover,
there is a canonical retraction rA of D onto A such that for every x ∈ D,
[x, rA(x)] is an irreducible arc between x and A. If A1 ⊂ A2 ⊂ · · · is a tower
of subcontinua in D such that

⋃∞
i=1 Ai is dense in D, then the function

sequence (rAi)
∞
i=1 converges uniformly to the identity map of D.
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Lemma 10. If D is a dendrite with dense set E of end-points, then the
space (D \ E)2n+1 is A1[n]-universal for every integer n ≥ 0.

Proof. Fix any integer n ≥ 0. It is easy to see that the space X = D \E
is a σ-compact absolute retract of first Baire category. By Lemma 2, the
power X2n+1 is a σZn-space. Let (Ai)∞i=1 ⊂ X be an increasing sequence of
non-degenerate subcontinua in D such that

⋃∞
i=1Ai is dense in D. Each Ai,

being a retract of D, is an absolute retract. As we said, the sequence (rAi)
∞
i=1

of retractions converges uniformly to the identity map of D. This implies
that the sequence {r2n+1

Ai
: D2n+1 → A2n+1

i }∞i=1 of retractions converges
uniformly to the identity map of D2n+1. By Lemma 7, the tower (A2n+1

i )∞i=1
in X2n+1 has the mapping absorption property for n-dimensional compacta.
By Lemma 3, each A2n+1

i is a compact absolute retract with the disjoint
n-cells property. Applying Lemma 9, we deduce that the space X 2n+1 =
(D \ E)2n+1 is A1[n]-universal.

Proof of Theorem 1 . Let D be a dendrite such that the set E of end-
points of D is dense inD and each point x ∈ D has order≤ 3. Let X = D\E.
Theorem 1 trivially follows from Lemma 10 and

Lemma 11. Every locally path-connected space Y of first Baire category
contains a closed topological copy of the space X = D \ E.

Proof. Let d be any metric on Y and let Z be the completion of Y
with respect to this metric. It suffices to construct a continuous function
ϕ : D → Z such that ϕ−1(Y ) = X and ϕ|X is injective.

Write Y =
⋃∞
n=1 Yn, where (Yn)∞n=1 is an increasing sequence of closed

nowhere dense subsets of Y . Fix any point p ∈ X of order 2 in D and choose
a sequence (xn)∞n=1 of points of X such that X =

⋃∞
n=1[p, xn]. Inductively,

we shall construct two sequences (Xn)∞n=1 and (X ′n)∞n=1 of trees in X as
follows. Let X1 = [p0, p1], X ′1 = [p′0, p

′
1], where the points p0, p1, p

′
0, p
′
1 are

chosen so that [p, x1] ⊂ (p′0, p
′
1) ⊂ [p′0, p

′
1] ⊂ (p0, p1). Assuming that Xn

and X ′n have been constructed, choose points pn+1, p
′
n+1 in X \Xn so that

[p, xn+1] ⊂ [p, p′n+1) ⊂ [p, p′n+1] ⊂ [p, pn+1). Let X ′n+1 = X ′n ∪ [p, p′n+1] and
Xn+1 = Xn ∪ [p, pn+1]. Because the dendrite D contains at most countably
many points of order > 2, we may suppose that all points p′n have order 2
in D.

Let Mn denote the set of points y ∈ D such that pn ∈ [p, y). Clearly,
Mn is open in D and Mn = Mn ∪ {pn}.

Let Tn be the (finite) set of all points of X ′n of order 3 in Xn. We have
Tn ⊂ Tn+1 for every n. For every n fix a subset Sn ⊂ X ′n consisting of
points of order 2 in D such that Sn ⊃ {p′0, . . . , p′n}∪Sn−1 and the following
condition is satisfied for the set Rn = Tn ∪ Sn:

(1) diam(L) < 1/n for every connected component L of X ′n \ Rn.
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We are going to inductively construct continuous functions ϕn : D → Y and
real numbers cn > 0 so that the following conditions are satisfied for every
n ∈ N:

(2) d(ϕn, ϕn+1) < 2−n;
(3) ϕn|Xn is an embedding;
(4) ϕn = ϕn ◦ rXn ;
(5) ϕn+1(L) = ϕn(L) for every k ≤ n and every component L of

X ′k \Rn+1;
(6) d(ϕn(Mk), Y k) ≥ (1 + 1/n)ck for every k ≤ n.

Since Y1 is nowhere dense in Y and Y is locally path-connected, Y con-
tains an arc J1 with an end-point y1 6∈ Y1. Let ϕ1|X1 be any homeomorphism
of X1 onto J1 such that ϕ1(p1) = y1. Define ϕ1 by letting ϕ1 = (ϕ1|X1)◦rX1

and put c1 = 1
2d(y1, Y 1) > 0. Evidently, conditions (3), (4) and (6) are sat-

isfied.
Suppose we have constructed ϕk, ck, 1 ≤ k ≤ n, for some n ≥ 1. Consider

the point qn+1 ∈ Xn such that [qn+1, pn+1] is the irreducible arc between
Xn and pn+1. Since p′n+1 6∈ Xn, we have qn+1 ∈ [p, p′n+1). We claim that
qn+1 6∈ Rn = Tn ∪ Sn. Indeed, notice first that qn+1 is not of order 3 in Xn

(otherwise it would be of order ≥ 4 in D). Consequently, qn+1 6∈ Tn. If qn+1

is of order 2 in Xn, then it is of order 3 in D and thus qn+1 6∈ Sn. Finally,
if qn+1 is of order 1 in Xn, then qn+1 = pi for some i ≤ n. We claim that
qn+1 = pi 6∈ X ′n. Otherwise, by the construction of X ′n, we would have i < n
and [p, pi] ⊂ [p, p′j) ⊂ Xn for some j ∈ {i + 1, . . . , n}, which would imply
that pi = qn+1 is not of order 1 in Xn. Since Sn ⊂ X ′n, we have qn+1 6∈ Sn.

If qn+1 ∈ X ′n, denote by L0 the component of X ′n \Rn containing qn+1;
if qn+1 6∈ X ′n let L0 be the component of Xn \ X ′n containing qn+1. We
distinguish between two cases:

(a) qn+1 is of order two in Xn. Then L0 contains an arc A = [u, r] such
that A◦ = (u, r) is an open neighborhood of qn+1 in Xn.

(b) There exists i ∈ {0, . . . , n} such that qn+1 = pi is of order one in Xn.
Then L0 contains an arc A = [u, qn+1] such that A◦ = (u, qn+1] is an
open neighborhood of qn+1 in Xn.

Let α = min{2−n, (1/n − 1/(n+ 1)) min1≤k≤n ck} > 0. Without loss of
generality, we may assume that

(7) diamϕn(A) < 1
2α.

Since Y is of first Baire category, ϕn(Xn) is nowhere dense in Y . Then
the local path-connectedness of Y allows us to find an arc B ⊂ Y with
end-points ϕn(qn+1) and yn+1 6∈ Yn+1 ∪ ϕn(Xn) such that

(8) diamB < 1
2 min{α, d(ϕn(qn+1), ϕn(Xn \A◦))}.



8 T. BANAKH AND R. CAUTY

Let B′ = [yn+1, zn+1] be an irreducible subarc of B between yn+1 and
ϕn(Xn). Define an embedding ϕ′n+1 of Xn+1 into ϕn(Xn) ∪ B′ ⊂ Y as
follows. Let ϕ′n+1|Xn \ A◦ = ϕn|Xn \ A◦. In case (a), A ∪ [qn+1, pn+1] and
ϕn(A) ∪ B′ are triodes and we can extend ϕ′n+1 to an embedding of Xn+1

so that ϕ′n+1(A) = ϕn(A) and ϕ′n+1([qn+1, pn+1]) = B′. In case (b), let A′

be the subarc of ϕn(A) with end-points ϕn(u) and zn+1. We extend ϕ′n+1
onto Xn+1 so that ϕ′n+1|(A ∪ [qn+1, pn+1]) = A′ ∪B′.

Let ϕn+1 = ϕ′n+1 ◦ rXn+1 . Since Xn ⊂ Xn+1, we have rXn = rXn ◦ rXn+1

and if ϕn+1(x) 6= ϕn(x), then rXn+1(x) ∈ A∪ [qn+1, pn+1], and consequently,
both points ϕn(x) and ϕn+1(x) belong to the set ϕn(A) ∪ B′ which has
diameter < α ≤ 2−n according to (7) and (8). Thus (2) follows.

Let cn+1 = 1
2d(yn+1, Y n+1) > 0. If x ∈ Mn+1, then rXn+1(x) = pn+1

and hence ϕn+1(x) = yn+1 satisfies d(ϕn+1(x), Y n+1) > (1+1/(n + 1))cn+1.
Let k ≤ n and let x ∈ M k. If ϕn+1(x) = ϕn(x), then d(ϕn+1(x), Y k) ≥
(1 + 1/n)ck and if ϕn+1(x) 6= ϕn(x), then

d(ϕn+1(x), Y k) ≥ d(ϕn(x), Y k)− d(ϕn(x), ϕn+1(x))

≥
(

1 +
1
n

)
ck −

(
1
n
− 1
n+ 1

)
ck =

(
1 +

1
n+ 1

)
ck.

Let k ≤ n and L be a component of X ′k \Rk. Using the fact that Rk contains
the points p′j , 0 ≤ j ≤ k, and is contained in Rn, it is easy to show that
either L ∩ L0 = ∅ or L0 ⊂ L. In both cases, the construction of the map
ϕn+1 guarantees that ϕn+1(L) = ϕk(L).

According to (2) the sequence (ϕn) converges uniformly to a continuous
map ϕ : D → Z. Let x, x′ be two distinct points of X. Since X =

⋃∞
n=1 X

′
n,

condition (1) allows us to find an integer m and components L and L′ of
X ′m \ Rm such that x ∈ L, x′ ∈ L′ and L ∩ L′ = ∅. It follows from (5)
that ϕ(x) ∈ ϕm(L) and ϕ(x′) ∈ ϕm(L′). By (3), the sets ϕm(L) and ϕm(L′)
are disjoint and hence ϕ(x) 6= ϕ(x′) and ϕ|X is injective. The preceding
arguments also give ϕ(X) ⊂ Y .

Let x ∈ E. The equality [p, x) =
⋃∞
n=1(Xn ∩ [p, x)) implies the exis-

tence of infinitely many indices nk such that x ∈ Mnk . For every such nk,
(6) implies d(ϕ(x), Y nk) ≥ cnk > 0. Since the sequence (Yn) is increasing,
ϕ(x) 6∈ ⋃n=1 Y n ⊃ Y . This yields ϕ−1(Y ) = X.

Proof of Theorem 2 . Let D be a dendrite with dense set E of end-points.
It is not difficult to construct an increasing sequence (Di)∞i=1 of nowhere
dense subdendrites in D such that the union A =

⋃∞
i=1 Di is dense in D

and each dendrite Di has dense set of end-points. The space A, being a
connected subspace of D, is an absolute retract. Since each Di is nowhere
dense in D, A is an absolute retract of first Baire category. We claim that
the power An+1 is A1[n]-universal for every integer n ≥ 0.
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Fix any integer n ≥ 0. By Lemma 2, the power An+1 is a σZn-space
and by Lemma 4, each Dn+1

i is a compact absolute retract with the disjoint
n-cells property. Similarly to the proof of Lemma 10, it can be verified that
the tower Dn+1

1 ⊂ Dn+1
2 ⊂ . . . ⊂ An+1 has the mapping absorption property

for n-dimensional compacta. Therefore it is legitimate to apply Lemma 9 to
conclude that the space An+1 is A1[n]-universal.
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