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Abstract. It is proved that each hereditarily collectionwise Hausdorff com-
pact scattered space with finite scattered height admits a continuous semi-
lattice operation turning it into a topological semilattice with open principal
filters. On the other hand a compactification γN of a countable discrete space
N whose remainder is homeomorphic to [0, ω1] admits no (separately) continu-
ous binary operation turning γN into an inverse semigroup (semilattice). Also
we construct a compactification ψN of N admitting no separately continuous
semilattice operation and such that the remainder ψN \N is homeomorphic to
the one-point compactification of an uncountable discrete space. To show that
ψN admits no continuous semilattice operation we prove that the set of isolat-
ed points of a compact scattered topological semilattice X of scattered height
2 is sequentially dense in X. Also we prove that each separable scattered com-
pactum with scattered height 2 is a subspace of a separable compact scattered
topological semilattice with open principal filters and scattered height 2. This
allows us to construct an example of a separable compact scattered topolog-
ical semilattice with open principal filters and scattered height 2, which fails
to be Fréchet-Urysohn. Also we construct an example of a Fréchet-Urysohn
separable non-metrizable compact scattered topological semilattice with open
principal filters and scattered height 2.

In this note we pursue the investigations started in [6], [1] and consider a classical
problem of topological algebra [19]: which compatible algebraic structures can live
on a given topological space, or more precisely, on a given scattered compact space?
Let us remind that a topological space X is scattered if every nonempty subspace
of X contains an isolated point. In the sequel all topological spaces considered
in the paper are Hausdorff. Observe that non-discrete scattered spaces fail to be
topologically homogeneous and thus admit no compatible group structure. On
the other hand, there are compatible algebraic structures, more general than the
structure of a topological group, which can live on non-discrete scattered spaces.
We have in mind the structure of a regular topological semigroup.

Let us recall that a topological semigroup is, by definition, a topological space S
endowed with a continuous associative operation ∗ : S × S → S. A semigroup S is
regular if each element x ∈ S has an inverse, that is an element x−1 ∈ S such that
x∗x−1∗x = x and x−1∗x∗x−1 = x−1. If for each x ∈ S such an inverse element x−1

is unique, then S is called an inverse semigroup. By a topological inverse semigroup
we understand an inverse semigroup X endowed with a topology such that the
semigroup operation ∗ : X×X → X and the operation (·)−1 : X → X of taking the
inverse are continuous. The class of (topological) inverse semigroups is quite wide: it
contains all (topological) groups and all (topological) semilattices. By a semilattice
we understand a commutative semigroup (S,∧) so that every element x ∈ S is an
idempotent, that is, x ∧ x = x. We say that a topological semilattice (S,∧) has
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open principal filters if for any x ∈ S the upper set ↑ x = {y ∈ S : x ∧ y = x} is
open in S, see [6].

Observe that each topological space X admits a continuous binary operation
∗ : X ×X → X turning X into a regular semigroup: just take x ∗ y = x for every
x, y ∈ X . The situation with the structure of an inverse topological semigroup or
a topological semilattice is much more subtle.

Considering scattered compacta, we see that in the metrizable case, each metriz-
able scattered compactum, being homeomorphic to a subset of the real line, admits
a continuous semilattice operation max (or min). The simplest examples of non-
metrizable scattered compacta such as the one-point compactification αD of an
uncountable discrete space D or closed segments of ordinals also admit a continu-
ous semilattice operation.

This observation led us to the following natural question (see [6]): does every
scattered compact space admit a continuous semilattice operation? Surprisingly, the
answer to this question is negative. We shall give two different counterexamples
but first prove a positive result: we shall show that each hereditarily collectionwise
Hausdorff scattered compact space with finite scattered height admits a continuous
semilattice operation turning it into a topological semilattice with open principal
filters.

We remind that a topological space X is collectionwise Hausdorff if for each
closed discrete subspace D of X there is a discrete collection {Ux}x∈D of open
subsets of X such that x ∈ Ux for each x ∈ D (a collection F of subsets of a
topological space X is discrete if each point x ∈ X has a neighborhood meeting
at most one member of F). A topological space X is hereditarily collectionwise
Hausdorff if each subspace of X is collectionwise Hausdorff. Observe that the
hereditary cellularity of a hereditarily collectionwise Hausdorff space X equals its
cellularity.

Finally, we recall the definition of the scattered height of a scattered compactum,
which is defined by transfinite induction. For a topological space X let X(0) = X
and X(1) be the set of all nonisolated points of X . By transfinite induction for every
ordinal α > 1 define the α-th derived set X(α) of X letting X(α) =

⋂
β<α(X(β))(1).

By the scattered height κ(X) of a scattered topological space X we understand the
smallest ordinal α such that X(α) is finite. Thus the one-point compactification of
an infinite discrete space has scattered height 1. Conversely, each scattered compact
space X with κ(X) = 1 is a finite disjoint union of one-point compactifications of
infinite discrete spaces and thus is hereditarily collectionwise Hausdorff. As we shall
see later this is not true for scattered compacta of scattered height 2.

Theorem 1. Each hereditarily collectionwise Hausdorff compact scattered space X
with finite scattered height admits a continuous semilattice operation ∧ turning X
into a topological semilattice with open principal filters and also making any given
element x0 into the zero of X (that is x0 ∧ x = x0 for all x ∈ X).

Proof. The theorem will be proved by induction on the scattered height of X . If
κ(X) = 0 (which means that X is finite), then the theorem is trivial.

Suppose that κ(X) = n for some n ∈ N and the theorem has been proved for all
scattered compacta with scattered height < n. First we consider the case when the
set X(n) consists of a unique point a∞. Let x0 be a fixed point of X .

First we consider the subcase a∞ = x0. Note that D = X(n−1) \{a∞} is a closed
discrete subspace of X \ {a∞}. Taking into account that X is zero-dimensional
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and hereditarily collectionwise Hausdorff, we can assign to each a ∈ D a closed-
and-open neighborhood Ua ⊂ X such that {Ua}a∈D is a discrete collection in
X \ {a∞}. Let Ua∞ = X \

⋃
a∈D Ua and observe that max{κ(Ua) : a ∈ X(n−1)} <

n. By the induction assumption, for each a ∈ X(n−1) the space Ua admits a
continuous semilattice operations ∧a turning it into a topological semilattice with
open principal filters. Moreover, we can assume that a∞ is a zero of Ua∞ . Now
define a semilattice operation ∧ on X letting

x ∧ y =

{
x ∧a y if x, y ∈ Ua for some a ∈ X(n−1),

a∞ otherwise.

Let us show that X endowed with the operation ∧ is a topological semilattice with
open principal filters and zero a∞.

We shall verify the continuity of ∧ at the point (a∞, a∞). Take any neighborhood
W ⊂ X of a∞ = a∞∧a∞. Since the collection {Ua}a∈D is discrete in X \{a∞} and
X \W is compact, the set E = {a ∈ D : Ua ∩ (X \W ) 6= ∅} is finite and hence the
set U = X \

⋃
a∈E Ua is an open neighborhood of a∞ with U ∧U ⊂W . This means

that ∧ is continuous at (a∞, a∞). The continuous of ∧ at other points of X ×X
easily follows from the definition of ∧. This finishes the proof in the particular case
|X(n)| = 1 and x0 = a∞.

Now suppose that x0 6= a∞. Find a closed-and-open neighborhood U0 of x0 such
that a∞ /∈ U0. The preceding argument supplies us with a continuous semilattice
operation ∧1 on X \ U0 turning the scattered space X \ U0 into a topological
semilattice with open principal filters and a∞ for a zero. Since κ(U0) < n we
can apply the induction hypothesis to find a continuous semilattice operation ∧0

turning the space U0 into a topological semilattice with open filters and x0 as a
zero. Now define a semilattice operation ∧ on X letting

x ∧ y =





x ∧0 y if x, y ∈ U0,

x ∧1 y if x, y ∈ X \ U0,

x0 otherwise.

It is easy to see that X endowed with the operation ∧ is a topological semilattice
with open principal filters and zero x0. This finishes the proof in the particular
case |X(n)| = 1.

Now let us pass to the general case. Write X(n)∪{x0} = {x0, . . . , xm}. For every
i ≤ m find a closed-and-open neighborhood Ui of xi in X so that X =

⋃m
i=0 Ui and

Ui ∩ Uj = ∅ for distinct i, j ≤ m. Since the n-th derived set of every Ui consists of
at most one point, we can apply the previous argument to construct a continuous
semilattice operation ∧i on Ui turning Ui into a topological semilattice with open
principal filters and zero at xi. Now define a continuous semilattice operation ∧ on
X letting

x ∧ y =

{
x ∧i y if x, y ∈ Ui for some i ≤ m,

x0 otherwise.

It is easy to verify that ∧ turns X into a topological semilattice with open principal
filters and x0 for zero. � �

Now we construct examples of scattered compacta admitting no continuous semi-
lattice operation. In fact, one of these examples has so wild topological structure
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that it admits no partial order turning it into a pospace, locally compatible at each
point.

By a pospace we understand a topological space X endowed with a partial order
≤ such that for every point x ∈ X its lower set ↓ x = {y ∈ X : y ≤ x} and its
upper set ↑ x = {y ∈ X : y ≥ x} are closed in X . Two elements x, y of a partially
ordered set (X,≤) are comparable if x ≥ y or x ≤ y. We define a pospace (X,≤)
to be locally compatible at a point x0 ∈ X if for every neighborhood U of x0 there
is a neighborhood V of x0 such that for every x ∈ V there is z ∈ U such that z is
comparable with x0 and x. We say that a pospace (X,≤) is locally compatible at a
set W ⊂ X if it is locally compatible at each point of W .

Each semilattice operation ∗ : X ×X → X on a set X induces a partial order ≤
defined by x ≤ y iff x ∗ y = x. This order is locally compatible at a point x0 ∈ X
if the map sx0 : X → X , sx0 : x 7→ x ∗ x0, is continuous at x0.

Our first counterexample is based on

Theorem 2. Suppose a topological space X contains a topological copy W of [0, ω1)
whose complement N = X \W is countable and dense in X. Then

(a) X admits no partial order turning X into a pospace locally compatible at
W ;

(b) X admits no separately continuous semilattice operation;
(c) X is homeomorphic to no topological inverse semigroup.

Proof. We shall identify [0, ω1) with W = X \N .
(a). Suppose ≤ is a partial order on X such that (X,≤) is a pospace locally

compatible at W . Let

(1) N1 = {x ∈ N : [0, ω1)∩ ↑ x is uncountable}

(2) N2 = {x ∈ N : [0, ω1)∩ ↓ x is uncountable}.
We can find a countable ordinal α such that

(3) [α, ω1)∩ ↑ x = ∅ for every x ∈ N \N1

(4) [α, ω1)∩ ↓ x = ∅ for every x ∈ N \N2.

Since the sets [0, ω1)∩ ↑ x, x ∈ N1 and [0, ω1)∩ ↓ x, x ∈ N2, are closed and
unbounded in [0, ω1), the intersection

(5) C = (α, ω1) ∩
( ⋂

x∈N1

[0, ω1)∩ ↑ x
)
∩

( ⋂

x∈N2

[0, ω1)∩ ↓ x
)

is unbounded with respect to the well order of [0, ω1) (here we assume that the
intersection of the empty collection of subsets of a set S is equal to S).

We claim that there are three points a, b, c ∈ C such that b /∈ (↓ a) ∪ (↑ c).
Indeed, if C contains two incomparable elements x, y put a = x, b = y, c = x. If
any two elements of C are comparable, take any three distinct points a, b, c ∈ C
ordered so that a ≤ b ≤ c.

Note that U = X \
(
(↓ a) ∪ (↑ c) ∪ [0, α]

)
is a neighborhood of b. Using the

density of N and the local compatibility of (X,≤) at the point b find points x ∈
N \ (↓ a ∪ ↑ c) and z ∈ U such that z is comparable with x and b.
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Let us show that z ∈ W . Assuming the converse, we would get z ∈ N1 ∪ N2

according to (3) and (4) and the fact that z is compatible with b ∈ (α, ω1). On
the other hand the equality (5) implies that z /∈ N1 ∪ N2 since C 3 a /∈↑ z and
C 3 c /∈↓ z. Therefore z ∈W ∩U and thus z ∈ (α, ω1). Since z is comparable with
x, by (3) or (4) we would get x ∈ N1 ∪ N2. Again (5) implies that x /∈ N1 ∪ N2

since a /∈↑ x and c /∈↓ x. This contradiction completes the proof of the statement
in (a).

(b). Suppose ∗ : X ×X → X is a separately continuous semilattice operation.
Define a partial order ≤ on X letting x ≤ y iff x ∗ y = x. It can be easily seen that
X endowed with this order is a pospace locally compatible at each point. Now the
preceding statement completes the proof.

(c). Suppose ∗ : X × X → X is an operation turning X into a topological
inverse semigroup. Denote by E = {x ∈ X : x∗x = x} the set of idempotents of X .
Clearly, E is a closed subset of X . Moreover, according to [2, Theorem 1.1.7], E is
a semilattice with respect to the operation ∗. Let us show that E is uncountable.
Assuming the converse we shall prove that X is countable. Since X is a topological
inverse semigroup, the operation (·)−1 : X → X of taking the inverse is continuous.
Then the functions r1, r2 : X → E defined by r1(x) = x ∗ x−1 and r2(x) = x−1 ∗ x
for x ∈ X are continuous retractions of X onto E.

It is clear that X =
⋃

e,f∈E Ge,f , where Ge,f = r−1
1 (e) ∩ r−1

2 (f). To show that
X is countable, it suffices to verify that for every e, f ∈ E the set Ge,f is at most
countable. A routine verification shows that for every idempotent e ∈ E the set
Ge,e is a closed subgroup of the inverse semigroup X .

We claim that this subgroup Ge,e is countable. Observe that the set W \W
consists of at most one point and the space X is locally countable at each point
x /∈ W \ W . This implies that the topological group Ge,e, being topologically
homogeneous, is locally countable. The subspace Ge,e∩W of Ge,e, being countably
compact, is totally bounded in Ge,e (the latter means that for any neighborhood U
of the unit of the group Ge,e there is a finite subset F ⊂ Ge,e with Ge,e∩W ⊂ F ·U).
Now the local countability of Ge,e and the total boundedness of Ge,e ∩W in Ge,e

imply that the set Ge,e ∩W is countable. Since the set X \W is countable, we
conclude that the group Ge,e ⊂ (Ge,e ∩W ) ∪ (X \W ) is countable too.

To show that for any e, f ∈ E the set Ge,f is countable, fix any element a ∈ Ge,f

and consider the map h : Ge,f → X defined by h(x) = x ∗ a−1 for x ∈ Ge,f . Since
x ∗ a−1 ∗ a = x ∗ f = x ∗ (x−1 ∗ x) = x, the map h is injective. Given any point
x ∈ Ge,f , we get

r1(h(x)) = x ∗ a−1 ∗ (x ∗ a−1)−1 = x ∗ a−1 ∗ a ∗ x−1 = xx−1 = r1(x) = e

and
r2(h(x)) =(x ∗ a−1)−1 ∗ (x ∗ a−1) = a ∗ x−1 ∗ x ∗ a−1 =

=a ∗ r2(x) ∗ a−1 = a ∗ f ∗ a−1 = a ∗ r2(a) ∗ a−1 =

=a ∗ (a−1 ∗ a) ∗ a−1 = a ∗ a−1 = r1(a) = e,

which means that h(x) ∈ Ge,e.
It follows from the injectivity of h that |Ge,f | ≤ |Ge,e|. Consequently, the sets

Ge,f , e, f ∈ E, are countable and so is the semigroup X , a contradiction which
shows that the set E is uncountable.
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Since the set N is dense in X , we get that its image r1(N) is dense in E = r1(X).
Let α = sup r1(N) ∩ [0, ω1) (the supremum taken with respect to the natural well
order of [0, ω1) ). Since r1(N) is countable, we get α < ω1. Next, since the set E is
uncountable and closed in X , Ω = E ∩ [α + 1, ω1) is a closed unbounded subset of
[0, ω1) which is homeomorphic to [0, ω1) while M = E \ Ω ⊃ r1(N) is a countable
dense subset of E. Thus E is a topological semilattice containing a topological
copy Ω of [0, ω1) whose complement E \ Ω is countable and dense in E, which is
impossible according to the previous statement. � �

Remark 1. In case of compact X the second statement of Theorem 2 can be
derived from the third one with help of a classical result of Lawson [11, Theorem
II.1.5] according to which any separately continuous semilattice operation on a zero-
dimensional compact spaceK is continuous (moreover,K has a base of the topology
consisting of subsemilattices). Unfortunately, this Lawson result is not valid in the
class of commutative inverse semigroups. To construct a suitable counterexample,
consider the one-point compactification Z̄ = Z ∪ {∞} of the space of integers
endowed with the discontinuous separately continuous binary operation ∗ : Z̄×Z̄ →
Z̄ defined by

x ∗ y =

{
x+ y, if x, y ∈ Z;
∞, otherwise.

�

It follows from Parovichenko Theorem [17] (see also [7, 3.5.H] or [8]) that the
ordinal space [0, ω1] is the image of the remainder βN \ N of the Stone-Čech com-
pactification of N under a continuous map f : βN\N → [0, ω1]. The map f induces a
closed equivalence relation ∼ on βN: x ∼ y iff either x, y ∈ βN \N and f(x) = f(y)
or x, y ∈ N and x = y. The quotient space γN = βN/∼ of βN with respect to
the equivalence relation ∼ is a compactification of N whose remainder γN \ N is
homeomorphic to [0, ω1]. For this compactification Theorem 2 implies

Corollary 1. Let γN be a compactification of N whose remainder γN \N is home-
omorphic to the ordinal segment [0, ω1]. Then the compact scattered space γN does
not admit a separately continuous semilattice operation and is homeomorphic to no
topological inverse semigroup. �

The compactification γN has a rather complex structure. In particular, γN has
uncountable scattered height. Next, we construct a scattered compact space ψN
with scattered height 2 admitting no continuous semilattice operation.

The construction of the compactification ψN is based on the notion of MAD
family. We remind that a family F of infinite subsets of N is called almost disjoint
if A ∩ B is finite for any distinct A,B ∈ F . Under a maximal almost disjoint
(briefly MAD) family we understand any maximal element in the set of infinite
almost disjoint families of infinite subsets of N.

Given a MAD family F endow the set F ∪N with the topology generated by the
subbase {{n}, {A} ∪ A \K : n ∈ N, A ∈ F , K is a finite subset of N}. It is easy
to see that this topology on F ∪ N is Hausdorff and locally compact. Finally, let
ψF(N) = {∞} ∪ F ∪ N be the one-point compactification of the space F ∪ N.

Theorem 3. For any infinite MAD family F on N the space ψF (N) is a scattered
compact space with scattered height 2 admitting no separately continuous semilattice
operation.
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Proof. It is clear that ψF (N) is compact, scattered and has scattered height 2.
Observe also that no sequence (xn)n∈ω ⊂ N converges to the point at infinity ∞ of
ψF(N). Indeed, for any infinite set X = {xn : n ∈ ω} ⊂ N there is a set A ∈ F such
that A ∩ X is infinite. Then the subsequence {xn : xn ∈ A} of (xn) converges to
the point A 6= ∞ and thus (xn) cannot converge to ∞. Now we see that Theorem 3
is a particular case of the following more general theorem. � �

We call a subset A of a topological space X sequentially dense in X if each point
x ∈ X is the limit of a sequence (an) ⊂ A. In particular, N is not sequentially dense
in ψF (N).

Theorem 4. If a separable compact scattered space X of scattered height 2 admits
a separately continuous semilattice operation, then the set Iso(X) of isolated points
of X is sequentially dense in X.

To prove Theorem 4 we need the following fact, see [1, Lemma 1].

Lemma 1. If K is a compact subset with a unique non-isolated point e in a scattered
topological semilattice X, then the set K\ ↑ e is at most countable.

PROOF of Theorem 4. Let ∧ : X×X → X be a separately continuous semilattice
operation on a scattered compact space X with κ(X) ≤ 2. Applying [11, Theorem
II.1.5] we conclude that the operation ∧ is continuous. Fix any point e ∈ X .
We have to find a sequence (xn)n∈ω of isolated points of X , tending to e. If e ∈
X(1)\X(2), then e, being an isolated point of X(1), possesses a clopen neighborhood
U ⊂ X such that e is a unique non-isolated point of U . Take any infinite subset
{xn : n ∈ ω} ⊂ U \ {e} and observe that the sequence (xn) converges to e.

So it rests to consider the case e ∈ X(2). If e has a countable closed neighborhood
W in X , then by the compactness of X , W is metrizable and by the density of the
set Iso(X) in X there is a sequence (xn) ⊂ W ∩ Iso(X) convergent to e. So we
assume that no neighborhood of e is countable and no sequence of isolated points
of X tends to e.

The scattered topological semilattice (X,∧), being zero-dimensional, is Lawson
[11, Theorem II.1.5] which means that X has a base consisting of subsemilattices.
Since X(2) is finite, we can find a clopen neighborhood Y ⊂ X of e such that
Y ∩X(2) = {e} and Y is a subsemilattice of X . Without loss of generality we can
assume that Y = X , i.e., the set X(2) consists of a unique point e. Then X(1) is an
uncountable compact set with a unique non-isolated point e. Applying Lemma 1
we get that the set X(1)\ ↑ e is at most countable. Then the set X\ ↑ e also is at
most countable and thus can be written as X\ ↑ e =

⋃
n∈ω Fn where Fn ⊂ Fn+1

are finite subsets. By the compactness of the set ↑ e, for every n ∈ ω find a closed
neighborhood W̄n ⊂ X of ↑ e such that for each z ∈ W̄n both z and z ∧ e are not
in Fn . Without loss of generality we can assume that W̄n+1 ⊂ W̄n for all n ∈ ω.
Thus

⋂
n∈ω W̄n =↑ e.

Let 〈 Iso(X)〉 be the smallest subsemilattice of X containing the set Iso(X).
SinceX is separable, the set Iso(X) is countable as well as the semilattice 〈 Iso(X)〉.
We claim that the partial order induced by the semilattice operation is well-founded
on the set C = (X(1)∩ ↑e) \ (〈 Iso(X)〉 ∪ {e}). The latter means that each subset
of C has a minimal element, or equivalently, there is no infinite strictly decreasing
sequences (en)n∈ω in C. To prove this fact, assume that (en)n∈ω ⊂ C is such a
decreasing sequence (i.e. en ∧ en+1 = en+1 and en 6= en+1 for all n). For every
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n ∈ ω fix a neighborhood Un ⊂ W̄n of en such that Un ∩ X(1) = {en}. We can
take the neighborhoods Un to be pair-wise disjoint. Next, for every n ∈ ω, fix a
sequence (xn,m)m∈ω ⊂ Un ∩ Iso(X) convergent to en (such a sequence exists since
en ∈ X(1) \X(2)).

Using the continuity of the semilattice operation, for every n ∈ ω fix a function
fn : ω → ω such that yn = x0,fn(0) ∧ x1,fn(1) ∧ · · · ∧ xn,fn(n) ∈ Un. We can
assume that fn(i) < fm(i) for all i ∈ ω and n < m. Taking into account that
Un ∩ X(1) = {en} 6⊂ 〈 Iso(X)〉 and yn ∈ 〈 Iso(X)〉 ∩ Un, we conclude that yn ∈
Un \ X(1) ⊂ Iso(X) for all n ∈ ω. The space X , being compact of scattered
height 2, is sequentially compact [16]. Consequently, some subsequence of (yn)
converges to a point y∞ ∈ X(1). Without loss of generality, we can assume that
the sequence (yn) tends to y∞. The continuity of the semilattice operation and
the equality yn = xk,fn(k) ∧ yn holding for all k ≤ n imply that y∞ = limn yn =
limn(xk,fn(k) ∧ yn) = limn xk,fn(k) ∧ limn yn = ek ∧ y∞. Taking into account that e
is the limit point of the sequence (ek)k∈ω , we conclude that y∞ = y∞ ∧ e and thus
y∞ ≤ e. We claim that y∞ = e.

Assuming the converse we would find m ∈ ω such that y∞ ∈ Fm. Now recall
that for any k ≥ m we have yk ∈ Uk ⊂ W̄k ⊂ W̄m. Since the set W̄m is closed in X ,
we get y∞ ∈ W̄m. Now the inclusion y∞ = y∞ ∧ e ∈ Fm contradicts the choice of
the set W̄m. Therefore y∞ = e and (yn) ⊂ Iso(X) is a sequence of isolated points
of X tending to e which contradicts our assumption. This contradiction shows that
the partial order on the set C is well-founded.

Consider the subset L = {e} ∪
⋃
{↑ x : x ∈ 〈 Iso(X)〉∩ ↑ e \ {e}} and observe

that it is at most countable. This follows from the finiteness of the set X(1)∩ ↑ x
for any x 6≤ e. Observe also that (X(1)∩ ↑ e) \ L ⊂ C.

By induction for every n ∈ ω we shall construct an open subsemilattice Vn ⊂
Vn−1 ∩ W̄n of X containing the element e, a minimal element en of (Vn−1 ∩X(1)∩ ↑
e) \ L, and an element xn ∈ Vn−1 ∩ Iso(X) such that

a) xn ∧ z ∈ X(1) for each z ∈ Vn ∩ Iso(X) and
b) xn ∧ xn−1 6= xi−1 ∧ xi for every i ∈ {1, . . . , n− 1} with xi−1 ∧ xi 6= e.
Let V−1 = W̄0 and assume that for some n ∈ ω the neighborhoods Vi, and points

ei, xi are constructed for all i < n. Since the point e has no countable neighborhood,
the set Vn−1 ∩ X(1) is uncountable. Applying Lemma 1 we conclude that the set
Vn−1 ∩X(1)∩ ↑ e is uncountable and that the set (Vn−1 ∩X(1)∩ ↑ e) \L, being non-
empty and well-founded, contains a minimal element en. Since en ∈ X(1) \ X(2),
there is a sequence (yk)k∈ω ⊂ Iso(X) ∩ Vn−1 ∩ W̄n tending to en. Find a closed
neighborhood O1 ⊂ Vn−1 of e such that en ∧ z 6= en for any z ∈ O1. We claim that
there is a number k1 ∈ ω and a neighborhood O2 ⊂ O1 of e such that z ∧ yk ∈ X(1)

for all z ∈ O2 ∩ Iso(X) and k ≥ k1. Otherwise we would find an increasing number
sequence (ki)i∈ω and a sequence (zi)i∈ω of pairwise distinct isolated points of O1

such that zi ∈ W̄i for every i ∈ ω and zi ∧ yki ∈ Iso(X). By the sequential
compactness of X , we can assume that the sequence (zi)i∈ω converges to some
point z∞ ∈ O1. It follows that z∞ ∈

⋂
i∈ω W̄i =↑ e and z∞ ∈ X(1). Note that the

sequence (zi ∧ yki)i∈ω ⊂ Iso(X) converges to the point z∞ ∧ en 6= en. Taking into
account that no sequence of isolated points tends to e, we conclude that z∞∧en 6= e.
Recall that Vn−1 ∩ X(1)∩ ↑ e 3 z∞ ∧ en < en and en is a minimal element of the
set (Vn−1 ∩X(1)∩ ↑ e) \L. It follows that z∞ ∧ en ∈ L. By the definition of L this
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yields that z∞ ∧ en ∈↑ x for some x ∈ 〈 Iso(X)〉∩ ↑ e \ {e}. Since en ≥ z∞ ∧ en, we
get en ∈↑ x ⊂ L which contradicts the choice of the point en.

This contradiction shows that there is a number k1 ∈ ω and a neighborhood
O2 ⊂ O1 of e such that z ∧ yk ∈ X(1) for all k ≥ k1 and z ∈ O2 ∩ Iso(X).
Taking into account that X is a zero-dimensional Lawson semilattice, find a clopen
subsemilattice Vn ⊂ O2 containing e. We can choose Vn so small that z ∧ yk1 /∈
{xi−1 ∧ xi : i ∈ {1, . . . , n − 1} and xi−1 ∧ xi 6= e} for any z ∈ Vn. Finally, put
xn = yk1 . This completes the inductive step.

Now consider the sequence (xn)n∈ω ∈ Iso(X). By the sequential compactness of
X a subsequence of (xn) tends to some element x∞ ∈ X . Without loss of generality
we can assume that all the sequence (xn) tends to x∞. Since xk ∈ Vk−1 ⊂ W̄m

for any k > m, we get x∞ ∈
⋂

m∈ω W̄m =↑ e. Our hypothesis yields that x∞ 6= e.
Then the sequence (xn ∧ xn+1)n∈ω tends to x∞ ∧ x∞ = x∞. By the choice of the
sequence (xn) we get xn∧xn+1 ∈ X(1). Since e is a unique non-isolated point ofX(1)

we conclude that there are numbers n < m such that xm∧xm+1 = xn∧xn+1 = x∞,
which contradicts the choice of the sequence (xi). This contradiction finishes the
proof of theorem. �

Unlike the compactification γN from Corollary 1 which has size ℵ1, the size of the
compactification ψF(N) cannot be too small. More precisely, |ψF(N)| = |F| ≥ a
where a is the smallest size of an infinite MAD family on N. It is known that
ℵ1 ≤ a ≤ c. Martin’s Axiom implies a = c but there are models of ZFC with a < c,
see [4], [18].

We define a topological space X to be a ψ-space if X is homeomorphic to the
compactification ψF (N) for some MAD family F on N.

The following proposition shows that the cardinality restriction on ψ-spaces is
essential. We remind that a topological space X is Fréchet-Urysohn if for every
point a from the closure Ā of a subset A ⊂ X in X there is a sequence (an) ⊂ A
convergent to a.

Proposition 1. Suppose that X is a compact scattered space of scattered height 2.
If X is not Fréchet-Urysohn, then X contains a copy of a ψ-space and consequently,
|X | ≥ a.

Proof. By [16], the space X , being scattered compact, is sequentially compact.
Assuming that X is not Fréchet-Urysohn, we could find a countable subset A ⊂ X
and a point a ∈ Ā such that no sequence (an) ⊂ A converges to a. It is easy to
see that a ∈ X(2). Let W ⊂ X be a closed-and-open neighborhood of a such that
W ∩X(2) = {a}. It follows that the intersection X(1) ∩W ∩A is finite and thus we
can assume that A ⊂W \X(1). Let K be the closure of the set A in X . It follows
that K(2) = {a}, A = Iso(K) and no sequence (an) ⊂ A converges to a.

We claim that K is a ψ-space. Since D = K(1) \ K(2) is a discrete subspace
of K, to each point x ∈ D we can assign a clopen subset Ux of K such that
Ux ∩K(1) = {x}. We claim that F = {Ux ∩ A : x ∈ D} is a MAD family on A.

First we verify that for any distinct points x, y ∈ D the intersection Ux ∩ Uy is
finite. Otherwise by the compactness of K, we would find a non-trivial sequence
(an) ⊂ Ux ∩ Uy having a cluster point a∞ ∈ Ux ∩ Uy ∩K(1) which is not possible
since Ux ∩ Uy ∩ K(1) = ∅. Consequently, |F| = |D| and hence the family F is
infinite.

Next, we show that F is a maximal almost disjoint family. Assuming the converse
we would find an infinite set U ⊂ A such that U ∩ Ux is finite for all x ∈ D. By
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the sequential compactness of K we could find a non-trivial sequence (an)n∈ω ⊂ U
convergent to a point a∞ ∈ K(1). Taking into account that Ux∩{an : n ∈ ω} is finite
for all x ∈ D, we conclude that a∞ 6= x for any x ∈ D and thus a∞ = a ∈ K(2).
Therefore, the sequence (an) ⊂ A converges to a, which is a contradiction.

Thus F is a MAD family on A. Now consider the bijective map h : K → ψF (A)
defined by h(x) = x if x ∈ A = K \ K(1), h(x) = Ux if x ∈ K(1) \ K(2), and
h(a) = ∞. Observe that h is continuous and thus is a homeomorphism by the
compactness of K. Therefore X contains the topological copy K of the ψ-space
ψF(A) and hence |X | ≥ |K| = |F| ≥ a. � �

Besides the size and the scattered height, there is another essential difference
between the scattered compacta γN and ψN from Theorems 2 and 3: unlike the
space γN, the space ψN embeds into a compact semilattice S so that the remainder
S \ ψN is countable. This follows from the subsequent general

Theorem 5. Each scattered compactum K of scattered height κ(K) ≤ 2 is a sub-
space of a scattered compact semilattice S ⊃ K with open principal filters such that
κ(S) = κ(K), S(1) = K(1) and | Iso(S)| = | Iso(K)|.

To prove this theorem we need to make some preliminary work. For an infinite
discrete space D let αD = D ∪ {∞} be the one-point compactification of D. The
compactification αD can be identified with the subspace {χ∅, χ{x} : x ∈ D} of the
Cantor cube {0, 1}D (here for a subset A ⊂ D by χA : D → {0, 1} we denote the
characteristic function of the set A, i.e., χA(x) = 1 iff x ∈ A). We can think of
{0, 1}D as a compact semilattice endowed with the usual min-operation. In this
case αD ⊂ {0, 1}D is an ideal in {0, 1}D in the sense that min(x, y) ∈ αD for each
x ∈ αD and y ∈ {0, 1}D.

For a subset A ⊂ {0, 1}D let 〈A〉 be the smallest subsemilattice of {0, 1}D con-
taining the set A.

Lemma 2. If K is a subspace of {0, 1}D such that K(1) = αD, then 〈K〉 is a
compact scattered semilattice with 〈K〉(1) = αD and | Iso(〈K〉)| = | Iso(K)|.

Proof. First we verify that the semilattice 〈K〉 is compact. Given an open cover U
of 〈K〉 find a finite subcover V of the compact subset αD = K(1) ⊂ 〈K〉. Taking
into account that αD is an ideal of {0, 1}D, find an open ideal V of {0, 1}D such
that αD ⊂ V ⊂ ∪V . Since K(1) ⊂ V , the set F = K \ V is finite. Consequently,
the set 〈K〉\V = 〈F 〉 is finite as well and hence can be covered by a finite subcover
W of U . Then 〈K〉 is covered by the finite subcover V ∪W of U which yields the
compactness of 〈K〉.

The above argument implies that the set 〈K〉 \ V is finite for any neighborhood
V of K(1). This observation implies that 〈K〉(1) = K(1) = αD. Then Iso(K) ⊂
Iso(〈K〉) and hence | Iso(K)| ≤ | Iso(〈K〉)|.

Since K(1) = αD is an ideal of {0, 1}D, 〈K〉 = K(1) ∪ 〈 Iso(K)〉 and thus
Iso(〈K〉) ⊂ 〈 Iso(K)〉 which yields | Iso(K)| = | Iso(〈K〉)|. � �

Now we are able to prove Theorem 5.
PROOF of Theorem 5. Suppose that K is a compact scattered space of scattered

height κ(K) ≤ 2. Repeating the argument in the proof of Theorem 1 we can reduce
the proof to the special case when the second derived set K(2) of K consists of a
unique point ∞.
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For i = 0, 1 let Di = K(i)\K(i+1) where K(0) = K. Let f0 : K → {0, 1}D0 be the
continuous function defined by f0(x) = χ∅ if x ∈ K(1) and f0(x) = χ{x} if x ∈ D0 =
K \K(1). By analogy, define a function f1 : K(1) → {0, 1}D1 letting f1(x) = χ∅ if
x ∈ K(2) and f1(x) = χ{x} if x ∈ D1 = K(1) \K(2). Since K is a zero-dimensional
compact space, the function f1 extends to a continuous function f̄1 : K → {0, 1}D1.
Now consider the function f = (f0, f̄1) : K → {0, 1}D0 ×{0, 1}D1 and observe that
it is injective and hence is a topological embedding.

We can think of the product P = {0, 1}D0 × {0, 1}D1 as a compact topological
semilattice endowed with the usual min-operation. Let S be the smallest sub-
semilattice of P containing the compactum f(K). The previous lemma implies
that S is a compact scattered semilattice with S(1) = f(K(1)), κ(S) = κ(K) and
| Iso(S)| = | Iso(K)|. It is easy to see that S is a compact semilattice with open
principal filters. This finishes the proof of the theorem. �

Theorem 5 implies that the space ψN from Theorem 3 is a subspace of a separable
scattered compact semilattice S with open principal filters such that κ(S) = 2.
Since ψ(S) is not Fréchet-Urysohn, S is not Fréchet-Urysohn either. Thus we get
the following surprising result nicely complementing Theorem 4.

Corollary 2. There is a separable scattered compact semilattice S with open prin-
cipal filters and scattered height κ(S) = 2 which fails to be a Fréchet-Urysohn space.

There are also simple examples of Fréchet-Urysohn separable non-metrizable
topological semilattices with open principal filters and scattered height 2. Such an
example can be constructed as follows. Let C be the Cantor cube {0, 1}ω and B
be the standard base of the topology of C, i.e., B = {pr−1

n (x) : n ∈ ω, x ∈ {0, 1}n}
where prn : C → {0, 1}n, prn : (xi)∞i=0 7→ (xi)n−1

i=0 , is the natural projection. For a
subset A ⊂ C denote by χA : C → {0, 1} the characteristic function of the set A
(that is, χA(x) = 1 iff x ∈ A). Such a characteristic function is an element of the
non-metrizable Cantor cube {0, 1}C. In this cube consider the subspace

S = {χ∅, χ{x}, χU : x ∈ C,U ∈ B} ⊂ {0, 1}C.

It is easy to see that S is a compact scattered subspace of {0, 1}C of scattered height
2. It should be mentioned that the space S is well-known in topology as an example
of a compact scattered space with is neither supercompact, nor hereditarily normal,
see [15].

Observe that S is a subsemilattice of {0, 1}C with respect to the coordinate-wise
min-operation. Moreover, it can be easily shown that the topological semilattice
(S,min) has the following properties.

Proposition 2. The space S endowed with the min-operation is a Fréchet-Urysohn
separable non-metrizable scattered compact topological semilattice with open princi-
pal filters and scattered height 2.

Now let us pass to open problems, first of which is suggested by Theorem 4.

Problem 1. Suppose X is a compact topological semilattice of finite scattered
height. Is the set Iso(X) of isolated points of X sequentially dense in X?

Another question is suggested by Theorem 5.

Problem 2. Is every (separable) scattered compact space [with finite scattered
height] a subspace of a (separable) scattered compact topological semilattice?
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As we saw in Corollary 2 a separable scattered compact semilattice needs not
be Fréchet-Urysohn. It should be mentioned that the class of compact Fréchet-
Urysohn spaces includes all Corson compacta (and consequently, Eberlein, Gulko,
Talagrand compacta) and all Rosenthal and Rosenthal-Banach compacta, see [10],
[3], [9], [14]. The compactifications γN and ψF (N) from Theorems 2 and 4 are not
Fréchet-Urysohn.

Problem 3. Does every scattered Fréchet-Urysohn (Eberlein) compact space X
(with scattered height 2) admit a continuous semilattice operation?

In light of Theorem 2 and Remark 1 it is reasonable to ask

Problem 4. Does every scattered compact space admit a separately continuous
operation turning it into an inverse semigroup?

A semilattice operation is a particular case of a mean, i.e., a function m : X ×
X → X such that m(x, y) = m(y, x) and m(x, x) = x for every x, y ∈ X , see [5].

Problem 5. Does every scattered compact space X admit a (separately) continuous
mean m : X ×X → X?

Following [5] we say that a compact space K is hyadic if X is a continuous
image of the space of all closed subsets of some compact space in the Vietoris
topology (equivalently, X is a continuous image of a zero-dimensional compact
topological semilattice). By [5] each non-discrete Gδ-subspace of a hyadic compact
space contains a non-trivial convergent sequence. Consequently, the space βN is
not hyadic. In fact each Tychonov space X with hyadic βX is pseudocompact, see
[5, p.42].

Problem 6. Is every scattered compact space hyadic? In particular, are the spaces
γN and ψF (N) from Corollary 1 and Theorem 3 hyadic? Is γN (resp. ψF(N)) a
continuous image of a compact topological semilattice?

Acknowledgement. The authors express their sincere thanks to the referee for
very careful reading the manuscript and valuable remarks improving the presenta-
tion.



COMPATIBLE ALGEBRAIC STRUCTURES ON SCATTERED COMPACTA 13

References

[1] T. Banakh, On topological structure of topological semilattices with open principal ideals,
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