ON LINEAR REALIZATIONS AND LOCAL SELF-SIMILARITY OF THE UNIVERSAL ZARICHNYI MAP

Taras Banakh and Dušan Repovš

ABSTRACT. Answering a question M.Zarichnyi we show that the universal Zarichnyi map $\mu: \mathbb{R}^{\infty} \to Q^{\infty}$ is not locally self-similar. Also we characterize linear operators homeomorphic to μ and on this base give a simple construction of a universal Zarichnyi map μ .

In this paper we investigate the properties of the universal map $\mu: \mathbb{R}^{\infty} \to Q^{\infty}$ constructed by M.Zarichnyi in [Za₃] and subsequently studied in [Za₄] and [Za₅]. Answering a question posed in [Za₅] we prove that the map μ is not locally self-similar. Also we characterize linear operators homeomorphic to μ and on this base give a simple construction of a universal Zarichnyi map μ .

STRONGLY UNIVERSAL MAPS

All topological spaces considered in this paper are Tychonov, all compact spaces are metrizable, and all maps are continuous; $\omega = \{0, 1, 2, ...\}$ stands for the set of all finite ordinals.

Given a class \mathcal{C} of compacta, by \mathcal{C}^{∞} we denote the class of topological spaces X admitting a countable cover \mathcal{U} by subsets of the class \mathcal{C} , generating the topology of X in the sense that a subset $F \subset X$ is closed in X if and only if $F \cap K$ is closed in K for every $K \in \mathcal{U}$. In our subsequent considerations $\mathcal{C} = \mathcal{K}$ or \mathcal{K}_{fd} , where \mathcal{K} (\mathcal{K}_{fd}) is the class of all (finite-dimensional) metrizable compacta.

Given a space X with a fixed point * let X^{∞} denote the set

$$X_f^{\omega} = \{(x_i)_{i \in \omega} \in X^{\omega} : x_i = * \text{ for almost all } i\}$$

endowed with the strongest topology inducing the product topology on each space $X^n = \{(x_i)_{i \in \omega} \in X : x_i = * \text{ for all } i \geq n\}, n \in \omega$. If the space X is topologically homogeneous (like the real line \mathbb{R} or the Hilbert cube $Q = [0,1]^{\omega}$), then the topology of the space X^{∞} does not depend on the particular choice of a fixed point $* \in X$.

Among the spaces X^{∞} the spaces \mathbb{R}^{∞} and Q^{∞} occupy the special place: they are universal for the classes $\mathcal{K}_{fd}^{\infty}$ and \mathcal{K}^{∞} in the sense that each space from the class \mathcal{K}^{∞} (resp. $\mathcal{K}_{fd}^{\infty}$) is homeomorphic to a closed subspace of Q^{∞} (resp. \mathbb{R}^{∞}). Topological copies of

¹⁹⁹¹ Mathematics Subject Classification. 57N20, 57N17.

Key words and phrases. Universal Zarichnyi map, local self-similarity.

The authors were supported in part by the Slovenian-Ukrainian research grant SLO-UKR 02-03/04.

the spaces \mathbb{R}^{∞} and Q^{∞} very often appear in topological algebra and functional analysis, see $[Ba_2]$ — $[BS_2]$, $[Sa_2]$ — $[Za_2]$. In particular, every infinite-dimensional linear topological space $X \in \mathcal{K}_{fd}^{\infty}$ is homeomorphic to \mathbb{R}^{∞} $[Ba_2]$ while each locally convex space $Y \in \mathcal{K}^{\infty}$ with uncountable Hamel basis is homeomorphic to Q^{∞} $[Ba_3]$. A topological characterization of the spaces \mathbb{R}^{∞} and Q^{∞} was given by K.Sakai $[Sa_1]$: Up to a homeomorphism \mathbb{R}^{∞} (resp. Q^{∞}) is a unique strongly \mathcal{K}_{fd} -universal (resp. strongly \mathcal{K} -universal) space in the class $\mathcal{K}_{fd}^{\infty}$ (resp. \mathcal{K}^{∞}).

A topological space X is defined to be $strongly\ \mathcal{C}$ -universal if every embedding $f: B \to X$ of a closed subset B of a space $A \in \mathcal{C}$ can be extended to an embedding $\bar{f}: A \to X$. Replacing the words "embedding" by "map" we obtain the definition of an absolute extensor for the class \mathcal{C} (briefly, $AE(\mathcal{C})$).

In [Za₃] the notion of the strong universality was generalized to maps. A map $\pi: X \to Y$ between topological spaces is defined to be $strongly\ \mathcal{C}$ -universal if for every embedding $f: B \to X$ of a closed subset B of a space $A \in \mathcal{C}$ and a map $g: A \to Y$ with $\pi \circ f = g|B$ there exists an embedding $\bar{f}: A \to X$ such that $\bar{f}|B = f$ and $\pi \circ \bar{f} = g$. Replacing the words "embedding" by "map" we obtain the definition of a \mathcal{C} -soft map. Observe that a space X is strongly \mathcal{C} -universal (resp. is an $AE(\mathcal{C})$) if and only if the constant map $X \to \{*\}$ is strongly \mathcal{C} -universal (resp. \mathcal{C} -soft).

The following theorem was proven in $[Ba_1]$.

Uniqueness Theorem. If $\pi: X \to Y$, $\pi': X' \to Y$ are strongly \mathcal{C} -universal maps from spaces $X, X' \in \mathcal{C}^{\infty}$, then there is a homeomorphism $h: X \to X'$ such that $\pi' \circ h = \pi$.

In case of a one-point space Y we obtain Uniqueness Theorem of strongly C-universal spaces (see [Sa₁]): Any two strongly C-universal spaces $X, X' \in \mathcal{C}^{\infty}$ are homeomorphic.

Thus (up to a homeomorphism) there is at most one strongly \mathcal{K}_{fd} -universal map from a space $X \in \mathcal{K}_{fd}^{\infty}$ onto a given space Y. For which spaces Y does such a map exist? If $Y \in \mathcal{K}_{fd}^{\infty}$, then the answer is easy: just consider the projection $\pi: Y \times \mathbb{R}^{\infty} \to Y$. If $Y \notin \mathcal{K}_{fd}^{\infty}$ (for example, if $Y = Q^{\infty}$) the situation is not so obvious. Nonetheless, applying certain non-trivial results of A.Dranishnikov [Dr], M.Zarichnyi has constructed in [Za₃] a strongly \mathcal{K}_{fd} -universal map $\mu: \mathbb{R}^{\infty} \to Q^{\infty}$. Afterwards, he proved that this map μ is homeomorphic to a group homomorphism [Za₅] and to an affine map between suitable spaces of probability measures [Za₄], thus giving an alternative and simpler constructions of the map μ . The Zarichnyi map $\mu: \mathbb{R}^{\infty} \to Q^{\infty}$ contains any map $f: A \to B$ from a finite-dimensional metrizable compactum A into a metrizable compactum B in the sense that there are two embeddings $e_A: A \to \mathbb{R}^{\infty}$ and $e_B: B \to Q^{\infty}$ such that $\mu \circ e_A = e_B \circ f$.

Characterizing linear operators homeomorphic to the map μ

We define two maps $\pi: X \to Y$ and $\pi': X' \to Y'$ to be homeomorphic if $\pi' \circ h = H \circ \pi$ for some homeomorphisms $h: X \to X'$ and $H: Y \to Y'$. In this section we characterize linear operators homeomorphic to the universal Zarichnyi map and classify \mathcal{K}_{fd} -invertible linear operators from a linear topological space $X \in \mathcal{K}_{fd}^{\infty}$ onto a locally convex space $Y \in \mathcal{K}^{\infty}$. By a "linear operator" we understand a linear continuous operator between linear topological spaces.

We define a map $\pi: X \to Y$ to be C-invertible if for every map $g: A \to Y$ of a space $A \in \mathcal{C}$ there is a map $f: A \to X$ such that $\pi \circ f = g$. It is clear that each strongly C-universal or C-soft map is C-invertible. For linear operators the converse statement is also true. In $[Za_5, 2.1]$ M.Zarichnyi proved that a continuous group homomorphism $h: G \to H$ is \mathcal{K}_{fd} -soft if and only if h is \mathcal{K}_{fd} -invertible and its kernel Ker h is an $AE(\mathcal{K}_{fd})$. Since each linear topological space is an $AE(\mathcal{K}_{fd})$ (see, e.g., $[Ba_2]$), we get

Theorem 1. A linear operator between linear topological spaces is \mathcal{K}_{fd} -soft if and only if it is \mathcal{K}_{fd} -invertible.

Next, we find conditions under which a given linear operator is strongly \mathcal{K}_{fd} -universal.

Theorem 2. A linear operator $T: X \to Y$ from a linear topological space $X \in \mathcal{K}_{fd}^{\infty}$ to a linear topological space Y is strongly \mathcal{K}_{fd} -universal if and only if the operator T is \mathcal{K}_{fd} -invertible and has infinite-dimensional kernel.

In the proof we will exploit two lemmas.

Lemma 1. If $X \in \mathcal{K}_{fd}^{\infty}$ is an infinite-dimensional linear topological space, then for every compactum $K \subset X$ there is a non-zero point $x \in X$ such that $([-1,1] \cdot x) \cap K \subset \{0\}$.

Proof. Replacing K by $[-1,1] \cdot K$, if necessary, we may assume that $K = [-1,1] \cdot K$. Since K is a compact subset of the space $X \in \mathcal{K}_{fd}^{\infty}$, $\dim K < n$ for some $n \in \mathbb{N}$. The linear space X, being infinite-dimensional, contains an n-dimensional linear space \mathbb{R}^n . We claim that there is a point x on the unit sphere S of \mathbb{R}^n such that $([-1,1] \cdot x) \cap K = \{0\}$. Assuming the converse, for every $x \in S$ we would find a number $n(x) \in \mathbb{N}$ such that $([-1,1] \cdot x) \cap K \supset [0,\frac{1}{n(x)}] \cdot x$. It can be shown that for every $n \in \mathbb{N}$ the set $S_n = \{x \in S : n(x) \leq n\}$ is closed in S. Since $S = \bigcup_{n \in \mathbb{N}} S_n$, the Baire Theorem guarantees that S_n has non-empty interior in S for some n. Then $\dim S_n = n - 1$. Since $K \supset [0, 1/n] \cdot S_n$ and $n > \dim K > \dim([0, 1/n] \cdot S_n) = n$, we get a contradiction. \square

Lemma 2. If $T: X \to Y$ is a linear operator with infinite-dimensional kernel from a linear topological space $X \in \mathcal{K}_{fd}^{\infty}$, then for every compact subset $C \subset X$ there exists an embedding $e: C \times [0,1] \to X$ such that e(c,0) = c and $T \circ e(c,t) = T(c)$ for all $c \in C$ and $t \in [0,1]$.

Proof. Let $L = \operatorname{Ker} T$ and $K = L \cap (C - C)$. By Lemma 1, there exists a non-zero point $x_0 \in L$ such that $([-1,1] \cdot x_0) \cap K \subset \{0\}$. Define the map $e: C \times [0,1] \to X$ letting $e(c,t) = c + tx_0$ for $(c,t) \in C \times [0,1]$. It is clear that e(c,0) = c and $T \circ e(c,t) = T(c)$ for every $c \in C$ and $t \in [0,1]$. To show that the map e is injective, fix two points $(c,t), (c',t') \in C \times [0,1]$ with e(c,t) = e(c',t'). Then $c-c' = (t'-t)x_0$ and T(c-c') = 0 which implies $c-c' \in K$. Since $K \ni c-c' = (t'-t)x_0 \in [-1,1]x_0$ and $K \cap ([-1,1]x_0) \subset \{0\}$, we get c-c' = 0 and t'-t = 0, i.e., (c,t) = (c',t'). \square

Proof of Theorem 2. The "only if" part of Theorem 2 is trivial. To prove the "if" part, assume that $T: X \to Y$ is an \mathcal{K}_{fd} -invertible operator, $X \in \mathcal{K}_{fd}^{\infty}$, and dim Ker $T = \infty$. To prove the strong \mathcal{K}_{fd} -universality of the map T, fix an embedding $f: B \to X$ of a closed subset B of a space $A \in \mathcal{K}_{fd}$ and a map $g: A \to Y$ such that $T \circ f = g|B$. By Theorem

1, the operator T is \mathcal{K}_{fd} -soft and hence there is a map $\tilde{f}: A \to X$ such that $\tilde{f}|B = f$ and $T \circ \tilde{f} = g$.

Denote by A/B the quotient space and let $q:A\to A/B$ be the quotient map. It is clear that the space A/B is finite-dimensional and thus admits an embedding $i:A/B\to [0,1]^n$ for some $n\in\mathbb{N}$ such that $e(\{B\})=0^n\in[0,1]^n$. Applying Lemma 2 several times, construct an embedding $e:\tilde{f}(A)\times[0,1]^n\to X$ such that $e(x,0^n)=x$ and $T\circ e(x,t)=T(x)$ for any $x\in\tilde{f}(A)$ and $t\in[0,1]^n$. It is easy to verify that the map $\bar{f}:A\to X$ defined by $\bar{f}(a)=e(\tilde{f}(a),i\circ q(a))$ for $a\in A$ is an embedding satisfying the conditions $\bar{f}|B=f$ and $T\circ\bar{f}=g$. \square

We apply Theorem 2 to prove the following theorem characterizing linear operators homeomorphic to the universal Zarichnyi map μ .

Theorem 3. A linear operator $T: X \to Y$ between linear topological spaces is homeomorphic to the strongly \mathcal{K}_{fd} -universal Zarichnyi map μ if and only if $X \in \mathcal{K}_{fd}^{\infty}$, Y is homeomorphic to Q^{∞} , and the operator T is \mathcal{K}_{fd} -invertible.

Proof. This theorem will follow from Theorem 2 and Uniqueness Theorem for strongly \mathcal{K}_{fd} -universal map as soon as we prove that each \mathcal{K}_{fd} -invertible linear operator $T:X\to Y$ from a linear topological space $X\in\mathcal{K}_{fd}^\infty$ onto a linear topological space Y containing a Hilbert cube has infinite-dimensional kernel. Assume to the contrary that $\operatorname{Ker} T$ is finite-dimensional. By Theorem 1, the operator T, being \mathcal{K}_{fd} -invertible, is \mathcal{K}_{fd} -soft. Fix a copy $Q\subset Y$ of the Hilbert cube in Y and an open surjective map $g:A\to Q$ of a finite-dimensional compactum A onto Q (such a map exists according to [Dr]). Since the operator T is \mathcal{K}_{fd} -invertible, there is a map $f:A\to X$ such that $T\circ f=g$. Let $B\subset \operatorname{Ker} T$ be any compact neighborhood of the origin in the finite-dimensional linear space $\operatorname{Ker} T$. Next, consider the compact set $K=f(A)+B\subset X$. Since $X\in\mathcal{K}_{fd}^\infty$, $\dim K< n$ for some $n\in\mathbb{N}$. Let $e:I^n\to Q\subset Y$ be any embedding of the n-dimensional cube I^n into Q. By the \mathcal{K}_{fd} -softness of the map T, there is a map $i:I^n\to X$ such that $T\circ i=e$ and $i(0^n)\in f(A)$. It is clear that i is an embedding.

We claim that K is a neighborhood of the point $x_0 = i(0^n)$ in $i(I^n)$. Assuming that it is not true, we would find a sequence $(x_n)_{n=1}^{\infty} \in i(I^n) \setminus K$ tending to x_0 . Then the sequence $(T(x_n))_{n=1}^{\infty}$ converges to $T(x_0)$. Let $a_0 \in A$ be any point with $f(a_0) = x_0$. Since the map $g: A \to Q$ is open and $g(a_0) = T \circ f(a_0) = T(x_0) = \lim_{n \to \infty} T(x_n)$, there exists a sequence $(a_n)_{n=1}^{\infty} \subset A$ tending to a_0 such that $g(a_n) = T(x_n)$ for each n. Then the sequence $(f(a_n))_{n=1}^{\infty}$ converges to $f(a_0) = x_0$ and has the property: $T \circ f(a_n) = g(a_n) = T(x_n)$ for every n. Hence $x_n - f(a_n) \in \text{Ker } T$ for every n. Since $\lim_{n \to \infty} x_n = x_0 = \lim_{n \to \infty} f(a_n)$, we get $\lim_{n \to \infty} (x_n - f(a_n)) = 0$ and thus $x_m - f(a_m) \in B$ for some m. Then $x_m \in B + f(a_m) \subset B + f(A) = K$, a contradiction with the choice of the sequence $(x_n)_{n=1}^{\infty}$. Thus K is a neighborhood of the point $x_0 = i(0^n)$ in $i(I^n)$ what is not possible since $\dim K < n = \dim(U)$ for any neighborhood $U \subset i(I^n)$ of $i(0^n)$. This contradiction shows that the kernel of T is infinite-dimensional. \square

We remind that a topological space Y is called a k-space if a subset $F \subset Y$ is closed in Y if and only if for every compact subset $K \subset Y$ the intersection $F \cap K$ is closed in K.

Theorem 4. A \mathcal{K}_{fd} -invertible linear operator $T: X \to Y$ from a linear topological space $X \in \mathcal{K}_{fd}^{\infty}$ onto a locally convex k-space Y is homeomorphic either to the projection $pr: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ for some $n, m \in \omega \cup \{\infty\}$ or to the strongly \mathcal{K}_{fd} -universal Zarichnyi map $\mu: \mathbb{R}^\infty \to Q^\infty$. The latter case occurs if and only if the space Y has uncountable Hamel basis.

Proof. First, we show that $Y \in \mathcal{K}^{\infty}$. Since $X \in \mathcal{K}_{fd}^{\infty}$, the space X contains a countable collection $\{X_n : n \in \omega\}$ of compact subsets, fundamental in the sense that every compact subset of X lies in some X_n . By $[\operatorname{En}_1, 3.1.22]$, for every n the image $f(X_n)$ of the compact set X_n is a metrizable compactum. The operator T, being \mathcal{K}_{fd} -invertible, is surjective. Then $Y = \bigcup_{n \in \omega} f(X_n)$. We claim that the collection $\{f(X_n) : n \in \omega\}$ generates the topology of Y, i.e., $Y \in \mathcal{K}^{\infty}$.

Assuming the converse, we would find a non-closed subset $F \subset Y$ such that $F \cap f(X_n)$ is closed in $f(X_n)$ for every n. Since Y is a k-space, there is a compactum $K \subset Y$ such that $F \cap K$ is not closed in K. The compactum $K = \bigcup_{n \in \omega} K \cap f(X_n)$, being the countable union of metrizable compacta, is metrizable. Consequently, there is a sequence $(y_n)_{n=1}^{\infty} \subset F \cap K$ converging to a point $y_0 \in K \setminus F$. Since the map T is \mathcal{K}_{fd} -invertible, there is a sequence $(x_n)_{n=1}^{\infty} \subset X$ converging to a point $x_0 \in X$ such that $T(x_n) = y_n$ for all $n \in \omega$. The subset $\{x_n : n \in \omega\} \subset X$, being compact, lies in the compactum X_m for some m. Then $\{y_n : n > 0\} \subset f(X_m) \cap F$. Since the intersection $f(X_m) \cap F$ is closed in $f(X_m)$, we get $y_0 = \lim_{n \to \infty} y_n \in f(X_m) \cap F$, a contradiction with $y_0 \notin F$.

Thus the locally convex space Y belongs to the class \mathcal{K}^{∞} . By [Ba₃], Y is homeomorphic either to Q^{∞} or to \mathbb{R}^n for some $n \in \omega \cup \{\infty\}$. Moreover, the last case occurs if and only if the algebraic dimension of Y is at most countable. If Y is homeomorphic to Q^{∞} , then by Theorem 2, the operator T is homeomorphic to the universal Zarichnyi map $\mu : \mathbb{R}^{\infty} \to Q^{\infty}$.

If Y is homeomorphic to \mathbb{R}^n for some $n \in \omega \cup \{\infty\}$, then the algebraic dimension of Y is at most countable and Y carries the strongest linear topology, see [Ba₂]. In this case there is a linear continuous operator $S: Y \to X$ such that $T \circ S = \operatorname{id}$ and the map $h: X \to Y \times \operatorname{Ker} T$ defined by $h(x) = (T(x), x - S \circ T(x))$ for $x \in X$ is a linear homeomorphism (with inverse $h^{-1}(y, l) = S(y) + l$) such that $\operatorname{pr} \circ h = T$, where $\operatorname{pr} : Y \times \operatorname{Ker} T \to Y$ is the projection. Hence the operator T is homeomorphic to the projection $\operatorname{pr} : Y \times \operatorname{Ker} T \to Y$. Since $\operatorname{Ker} T$ is a linear topological space from the class $\mathcal{K}_{fd}^{\infty}$ we can apply Corollary 1 (or [Ba₂]) to conclude that $\operatorname{Ker} T$ is homeomorphic to \mathbb{R}^m for some $m \in \omega \cup \{\infty\}$. Therefore T is homeomorphic to the projection $\operatorname{pr} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$. \square

Next, we show that linear operators classifying by Theorem 3 do exist.

Theorem 5. For every linear topological space $Y \in \mathcal{K}^{\infty}$ there is a \mathcal{K}_{fd} -invertible linear operator $T: X \to Y$ from a linear topological space $X \in \mathcal{K}_{fd}^{\infty}$.

Proof. Since $Y \in \mathcal{K}^{\infty}$, the space Y possesses a countable family $\{F_n : n \in \omega\}$ of compact subsets such that every compact subset of Y lies in some F_n . For every $n \in \omega$ denote by \mathcal{K}_n the subclass of \mathcal{K}_{fd} consisting of all at most n-dimensional compacta. Using the Dranishnikov Theorem [Dr], for every n we can find an \mathcal{K}_n -invertible map $f_n : K_n \to F_n$ of a finite-dimensional metrizable compactum K_n onto F_n . Now consider the discrete sum $K = \bigcup_{n \in \omega} K_n$ and the map $K = \bigcup_{n \in \omega} K_n$ and the map $K = \bigcup_{n \in \omega} K_n$ and the

map f is \mathcal{K}_{fd} -invertible. Let $L(K) \supset K$ be the free linear topological space over K and $T: L(K) \to Y$ unique linear operator extending the \mathcal{K}_{fd} -invertible map f. It is clear that the operator T is \mathcal{K}_{fd} -invertible. By $[Ba_2]$, $L(K) \in \mathcal{K}_{fd}^{\infty}$. \square

Note that Theorems 4 and 5 allow us to give an alternative construction of the universal map of Zarichnyi.

Question. Let $h: G \to H$ be a \mathcal{K}_{fd} -invertible continuous homomorphism between topological groups. Is h strongly \mathcal{K}_{fd} -universal if its kernel $h^{-1}(1)$ is strongly \mathcal{K}_{fd} -universal?

THE UNIVERSAL ZARICHNYI MAP IS NOT SELF-SIMILAR

We define a space X to be *locally self-similar* if every point of X has a basis of neighborhoods homeomorphic to X. It is well-known that the spaces \mathbb{R}^{∞} and Q^{∞} (like many other model spaces of infinite-dimensional topology) are locally self-similar.

In [Za₅] M.Zarichnyi extended the notion of the local self-similarity onto maps and asked if the map $\mu: \mathbb{R}^{\infty} \to Q^{\infty}$ is locally self-similar. He defined a map $\pi: X \to Y$ to be locally self-similar if for every point $x \in X$ and every neighborhood $U \subset X$ of x there is a neighborhood $V \subset U$ of x such that the map $\pi|V: V \to \pi(V)$ is homeomorphic to π . Observe that for locally self-similar spaces X, Y the projection $\operatorname{pr}: X \times Y \to Y$ is locally self-similar.

The following result shows that the strongly \mathcal{K}_{fd} -universal Zarichnyi map is close to being locally self-similar.

Theorem 6. If $T: X \to Y$ is a linear operator homeomorphic to the strongly \mathcal{K}_{fd} -universal Zarichnyi map $\mu: \mathbb{R}^{\infty} \to Q^{\infty}$, then for every nonempty open convex subset $U \subset X$ the map $T|U: U \to T(U)$ is homeomorphic to μ .

Proof. Fix any non-empty open convex subset $U \subset X$. Since X is homeomorpic to \mathbb{R}^{∞} , U is homeomorphic to \mathbb{R}^{∞} too. Next, T(U) is homeomorphic to Q^{∞} , being open contractible subspace of Y, the topological copy of Q^{∞} . By Uniqueness Theorem, to show that the map $T|U:U\to T(U)$ is homeomorphic to μ it suffices to verify that T|U is a strongly \mathcal{K}_{fd} -universal map.

First we show that the map $T|U:U\to T(U)$ is \mathcal{K}_{fd} -invertible. Fix any map $g:A\to T(U)$ from a compactum $A\in\mathcal{K}_{fd}$. Since the map T is \mathcal{K}_{fd} -invertible, there is a map $f:A\to X$ such that $T\circ f=g$. For every point $x\in K$ find a point $a_x\in \mathrm{Ker}\,T$ such that $f(x)+a_x\in U$. Next, let $U(x)=f^{-1}(U-a_x)$. Using the compactness of A find a finite subcover $\{U(x_1),\ldots,U(x_n)\}$ of the open cover $\{U(x):x\in A\}$ and let $\{\lambda_i:A\to[0,1]\}_{i=1}^n$ be a partition of unity such that $\lambda_i^{-1}(0,1]\subset U(x_i)$ for every $i\leq n$. Consider the map $\alpha:A\to \mathrm{Ker}\,T$ defined by $\alpha(x)=\sum_{i=1}^n\lambda_i(x)a_{x_i}$ for $x\in K$. It can be shown that the map $h=f+\alpha:A\to X$ has the properties: $T\circ h=T\circ f=g$ and $h(A)\subset U$. Therefore, the map T|U is \mathcal{K}_{fd} -invertible.

To show that it is strongly \mathcal{K}_{fd} -universal, fix an embedding $f: B \to U$ of a closed subset B of a space $A \in \mathcal{K}_{fd}$ and a map $g: A \to T(U)$ such that $T \circ f = g$. Since the map $T|U: U \to T(U)$ is \mathcal{K}_{fd} -invertible, there is a map $h_1: K \to U$ such that $T \circ h_1 = g$. Next, using the strong \mathcal{K}_{fd} -universality of the operator T, find a map $h_2: A \to X$ such that $h_2|B=f$ and $T \circ h_2=g$. Let $\lambda: A \to [0,1]$ be a continuous map such that $\lambda(B)=\{0\}$

and $\lambda(A \setminus W) = \{1\}$, where $W = h^{-1}(U)$. Next, consider the map $h : A \to X$ defined by $h(a) = \lambda(a)h_1(a) + (1 - \lambda(a))h_2(a)$ for $a \in A$. It is easy to see that $T \circ h = g$ and $h(A) \subset U$.

Let $q:A\to A/B$ be the quotient map. Since the quotient space A/B is finite-dimensional, there is an embedding $i:A/B\to [0,1]^n$ for some $n\in\omega$ such that $i(\{B\})=0^n$. The space h(A) belongs to the class \mathcal{K}_{fd} , being a compact subset of the space $X\in\mathcal{K}_{fd}^\infty$. Then by the strong \mathcal{K}_{fd} -universality of the operator T, there is an embedding $e:h(A)\times [0,1]^n\to X$ such that $e(x,0^n)=x$ and $T\circ e(x,t)=T(x)$ for every $x\in h(A)$ and $t\in [0,1]^n$. Since $h(A)\subset U$, there exists $\varepsilon>0$ such that $e(h(A)\times [0,\varepsilon]^n)\subset U$. Finally consider the map $\bar{f}:A\to X$ defined by $\bar{f}(a)=e(h(a),\varepsilon\cdot i\circ q(a))$ for $a\in A$. It can be easily shown that $\bar{f}|B=f,\bar{f}(A)\subset U$ and $T\circ \bar{f}=g$. Therefore, the map T|U is strongly \mathcal{K}_{fd} -universal. The space U, being an open subset of the space $X\in\mathcal{K}_{fd}^\infty$, belongs to the class \mathcal{K}_{fd}^∞ . If the space T(U) is homeomorphic to T(U), then by Uniqueness Theorem the maps T|U and T are homeomorphic. \square

Thus the local self-similarity of the Zarichnyi map μ would be proven if we would find a linear operator between locally convex spaces, homeomorphic to μ . Unfortunately, no such an operator exists. This is so because each locally convex space $X \in \mathcal{K}_{fd}^{\infty}$ has at most countable Hamel basis, see [Ba₂]. Consequently, each linear image of X also has at most countable Hamel basis and thus can not be homeomorphic to Q^{∞} . But this is not a unique reason why we can not find a linear operator between locally convex spaces, homeomorphic to the universal Zarichnyi map μ .

Theorem 6. Each open \mathcal{K}_{fd} -invertible map $f: \mathbb{R}^{\infty} \to Q^{\infty}$ is not self-similar.

Let us define a map $\pi: X \to Y$ to be *locally* \mathcal{K}_{fd} -invertible if for every point $x \in X$ and every neighborhood $U \subset X$ of x there is a neighborhood $V \subset U$ of x such that the map $\pi|V:V \to \pi(V)$ is \mathcal{K}_{fd} -invertible. It is clear that each locally self-similar \mathcal{K}_{fd} -invertible map is locally \mathcal{K}_{fd} -invertible.

We define a space X to be almost finite-dimensional if there is $n \in \mathbb{N}$ such that dim $F \leq n$ for every finite-dimensional closed subset F of X. Let us note that there exist infinite-dimensional almost finite-dimensional compact spaces, see [En₂, 5.2.23].

Theorem 6 will be derived from

Lemma 3. Each compactum K admitting a surjective locally \mathcal{K}_{fd} -invertible map $f: X \to K$ from a space $X \in \mathcal{K}_{fd}^{\infty}$, is almost finite-dimensional.

To prove this lemma we need

Lemma 4. For every compact space K and a closed subset $A \subset K \times Q$ with dim $A < \dim K$ there is a closed subset $F \subset K \times Q$ such that $F \cap A = \emptyset$ but $F \cap s(K) \neq \emptyset$ for every section $s : K \to K \times Q$ of the projection $p : K \times Q \to K$.

Proof. Find any $n \in \omega$ with dim $A \leq n < \dim K$. By Hurewicz-Wallman Theorem [En₂, 1.9.3], there exists a map $f: L \to S^n$ from a closed subset L of K into the n-dimensional sphere which has no continuous extension $\bar{f}: K \to S^n$.

Since S^n is an ANR, we can extend f to a continuous map $\tilde{f}: \bar{O}(L) \to S^n$ defined on the closure of an open neighborhood O(L) of L in K. Let $B = L \times Q$ and $U = O(L) \times Q$.

Since dim $A \leq n$, we can apply Hurewicz-Wallman Theorem again to find a continuous map $p: A \to S^n$ such that $p|A \cap \bar{U} = \tilde{f} \circ pr|A \cap \bar{U}$. Next, since S^n is an ANR, there is a continuous map $\bar{p}: V \to S^n$ defined on an open neighborhood V of the closed set $A \cap \bar{U}$ in $K \times Q$ such that $\bar{p}|A = p$ and $\bar{p}|\bar{U} = \tilde{f} \circ \text{pr}|\bar{U}$. Consider the open set $O(A) = O(B) \cup (V \setminus B)$, where $O(B) = \{x \in U : d(\bar{p}(x), \tilde{f} \circ \text{pr}(x)) < 1\}$ and d stands for the standard Euclidean metric of $\mathbb{R}^{n+1} \supset S^n$.

We claim that the closed set $F = (K \times Q) \setminus O(A)$ misses A but meets the image s(K) of every any section $s: K \to K \times Q$ of the projection pr. Assuming the converse, we would find a section $s: K \to K \times Q$ of the projection pr such that $s(Q) \cap F = \emptyset$. Then $s(K) \subset O(A)$ and we can consider the map $g = \bar{p} \circ s: K \to S^n$. Observe that $s(L) \subset B \cap O(A) = O(B)$ and hence $d(g(x), f(x)) = (d(\bar{p} \circ s(x), \bar{f} \circ \operatorname{pr} \circ s(x)) < 1$ for all $x \in L$ which yields that the maps g|L and f are homotopic. Since g|L has the extension $g: K \to S^n$, we may apply the Borsuk Extension Theorem [En₂, 1.9.7] to conclude that the map f has a continuous extension $\bar{f}: K \to S^n$, which contradicts to the choice of f. \square

Proof of Lemma 3. Suppose a compactum K admits an open surjective locally \mathcal{K}_{fd} invertible map $\pi: X \to K$ of a space $X \in \mathcal{K}_{fd}^{\infty}$. Assume that the compactum K is
not almost finite-dimensional. The compactum K, being a countable union of metrizable
compacta, is metrizable. By the compactness of K there is a point $y \in K$ having no almost
infinite dimensional neighborhood in K. Fix a countable base $\{U_n : n \in \omega\}$ of neighborhoods of y in K and for every $n \in \omega$ find a finite dimensional compactum $K_n \subset U_n$ with
dim $K_n > n$.

Fix any point $x \in X$ with $\pi(x) = y$ and let $\{X_n : n \in \omega\}$ be an increasing collection of finite-dimensional compact subsets of X generating its topology. Without loss of generality, $x \in X_0$ and $\dim X_n \leq n$ for every $n \in \omega$. The space X, having a countable network of the topology, admits an injective continuous map $i: X \to Q$ into the Hilbert cube. Now consider the injective map $e = (\pi, i): X \to K \times Q$ defined by e(x) = (f(x), i(x)) for $x \in X$. For every $n \in \omega$ let $A_n = i(X_n) \cap (K_n \times Q)$. Since $\dim A_n \leq \dim X_n \leq n < \dim K_n$, we can apply Lemma 4 to find a closed subset $F_n \subset K_n \times Q$ such that $A_n \cap F_n = \emptyset$ but $F_n \cap s(K_n) \neq \emptyset$ for every section $s: K_n \to K_n \times Q$ of the projection $p: K_n \times Q \to K_n$. Consider the set $F = \bigcup_{k \in \omega} e^{-1}(F_k)$. Since each set F_k is closed in $K \times Q$ and $K_n \cap F = \emptyset$

Consider the set $F = \bigcup_{k \in \omega} e^{-1}(F_k)$. Since each set F_k is closed in $K \times Q$ and $X_n \cap F = X_n \cap (\bigcup_{k=0}^{n-1} e^{-1}(F_k))$ for each $n \in \omega$, we get that F is a closed subset of X. Next, since $X_0 \cap F = \emptyset$, the set $U = X \setminus F$ is an open neighborhood of the point x in X.

Let us show that for every open neighborhood $V \subset U$ of x the map $\pi|V:V \to \pi(V)$ is not \mathcal{K}_{fd} -invertible. Indeed, since the map π is open, $\pi(V)$ is an open neighborhood of the point $\pi(x) = y$ and thus $f(V) \supset K_n$ for some $n \in \omega$. Assuming that the map $\pi|V$ is \mathcal{K}_{fd} -invertible we would find a map $g: K_n \to V \subset U$ such that $\pi \circ g = \mathrm{id}$. Then the map $s = e \circ g: K_n \to K \times Q$ has the properties: $\mathrm{pr} \circ s = \mathrm{id}$ and $s(K_n) \cap F_n = \emptyset$, a contradiction with the choice of the set F_n . \square

Proof of Theorem 6. Assume that $f: \mathbb{R}^{\infty} \to Q^{\infty}$ is an open \mathcal{K}_{fd} -invertible locally self-similar map. Then f is locally \mathcal{K}_{fd} -invertible. Let $K \subset Q^{\infty}$ be a topological copy of the Hilbert cube and $X = f^{-1}(K)$. Then $X \in \mathcal{K}_{fd}^{\infty}$ and $f|K: X \to K$ is an open surjective locally \mathcal{K}_{fd} -invertible map, a contradiction with Lemma 3. \square

References

- [Ba₁] T. Banakh, Parametric results for certain classes of infinite-dimensional manifolds, Ukr. Mat. Zh. **43**:6 (1991), 853–859.
- [Ba₂] T. Banakh, On linear topological spaces (linearly) homeomorphic to \mathbb{R}^{∞} , Matem. Studii 9:1 (1998), 99–101.
- [Ba₃] T. Banakh, Topological classification of strong duals to nuclear (LF)-spaces, Studia Math. 138:3 (2000), 201–208.
- [BH] T. Banakh, O. Hryniv, Free topological inverse semigroups as infinite-dimensional manifolds, Algebraical Structures and their Appl., In-t of Math. NASU, Kyiv, 2002, pp. 132–140.
- [BKS] T.Banakh, K.Kawamura, K.Sakai, The direct limit of the Banach-Mazur compacta, Bull. London Math. Soc. **32:6** (2000), 709–717.
- [BS₁] T. Banakh, K. Sakai, Characterizations of $(\mathbb{R}^{\infty}, \sigma)$ or (Q^{∞}, Σ) -manifolds and their applications, Topology Appl. **106** (2000), 115–134.
- [BS₂] T. Banakh, K. Sakai, Free topological semilattices homomeomorphic to \mathbb{R}^{∞} or Q^{∞} , Topology Appl. 106 (2000), 135–147.
- [Dr] A. Dranishnikov, Absolute extensors in dimension n and dimension-raizing n-soft maps, Uspekhi Mat. Nauk **39** (1984), 55–95. (in Russian)
- [En] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag, Lemgo, 1995.
- [Sa₁] K. Sakai, On \mathbb{R}^{∞} -manifolds and Q^{∞} -manifolds, Topology Appl. 18:1 (1984), 69–79.
- [Sa₂] K. Sakai, $A Q^{\infty}$ -manifold topology of the space of Lipschitz maps, Topology Appl. **53** (1993), 7–18.
- [Za₁] M. Zarichnyi, Free topological groups of absolute neighborhood retracts and infinite-dimensional manifolds, Dokl. Akad. Nauk SSSR 266 (1982), 541–544.
- [Za₂] M. Zarichnyi, Infinite-dimensional manifolds arising from direct limits of ANR's, Uspekhi Mat. Nauk **39(2)** (1984), 153–154.
- [Za₃] M. Zarichnyi, Functors generated by universal maps of injective limits of sequences of Menger compacta, Matematika. Nauchnyje trudy **562** (1991), Riga, 95–102.
- [Za₄] M. Zarichnyi, On universal maps and spaces of probability measures with finite support, Matem. Studii 2 (1993), 78–82.
- [Za₅] M. Zarichnyi, Strongly countable-dimensional resolvents of sigma-compact groups, Fundam. Prikl. Mat. 4:1 (1998), 101–108.

Department of Mathematics and Mechanics, Lviv University, Universytetska 1, Lviv, 79000, Ukraine

E-mail address: tbanakh@franko.lviv.ua

Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, Slovenia 1001

E-mail address: dusan.repovs@uni-lj.si