DIVISION AND k-TH ROOT THEOREMS FOR @Q-MANIFOLDS

TARAS BANAKH AND DUSAN REPOVS

ABSTRACT. We prove a that a locally compact ANR-space X is a Q-manifold if and only if it has the
Disjoint Disk Property (DDP), all points of X are homological Zoo-points and X has the countable-
dimensional approximation property (cd-AP), which means that each map f : K — X of a compact
polyhedron can be approximated by a map with countable-dimensional image. As an application we
prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold.
If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X x [0,1] are Q-manifolds
as well. We construct a countable family X of spaces with DDP and cd-AP such that no space X € X
is homeomorphic to the Hilbert cube @ whereas the product X X Y of any different spaces X,Y € X is
homeomorphic to Q. We also show that no uncountable family X with such properties exists.

1. DIvISION AND k-ROoOT THEOREMS FOR CANTOR AND T'YCHONOV CUBES

It is obvious that the powers X*, MF* of two homeomorphic topological spaces X, M are homeomorphic
as well. For certain “nice” spaces M the converse implication is also true: a space X is homeomorphic
to M if for some finite number k the powers X* and M* are homeomorphic. Results of this type will be
referred as k-th Root Theorems. A typical example of such a theorem is k-th Root Theorem for Cantor
and Tychonov cubes.

Theorem 1 (k-th Root Theorem for Cantor and Tychonov cubes). Let M be either a Cantor cube {0,1}7
with 7 > 1 or a Tychonov cube [0,1]* with k > Ny. A topological space X is homeomorphic to M if and
only if for some finite number k € N the powers X* and M* are homeomorphic.

By induction this theorem can be easily derived from the following

Theorem 2 (Division Theorem for Cantor and Tychonov cubes). Let M be either a Cantor cube {0,1}7
with 7 > Vg or a Tychonov cube [0,1]" with k > Ny. If the product X XY of two spaces X,Y is
homeomorphic to M, then X orY is homeomorphic to M.

This theorem can be easily derived from famous topological characterizations of Cantor and Tychonov
cubes, due to S¢epin (see [S1] and [S2]).

Theorem 3 (Scepin). Let X be a compact Hausdorff space.
(1) X is homeomorphic to a Cantor cube {0,1}" of weight T > Ng if and only if X is a uniform-by-
character zero-dimensional AE(0)-space of weight w(X) = 7;
(2) X is homeomorphic to a Tychonov cube [0,1]7 of weight T > Ry if and only if X is a uniform-
by-character AE-space of weight w(X) = 7.

We recall that a topological space X is called an AE-space (resp. AE(0)-space) if any continuous map
f+ B — X defined on a closed subset B of a (zero-dimensional) compact Hausdorff space A can be
extended to a continuous map f: A — X.

A topological space X is called uniform-by-character if the character of X at each point x € X is equal
to some fixed cardinal x. We recall that the character of X at a point x € X is the smallest size |B| of a
neighborhood base at x.

For 7 = Xy Séepin’s characterization of Cantor cubes turns into the classical Brouwer characterization
of the Cantor set: a space X is homeomorphic to the Cantor set {0,1}* if and only if X is a zero-
dimensional compact metrizable space without isolated points.
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Now we are able to derive the Division Theorem 2 from Séepin’s characterization theorem. Assume
that M = {0,1}" is a Cantor cube with 7 > Ry and let X,Y be two spaces whose product X x Y is
homeomorphic to M.

Then X,Y are compact zero-dimensional AE(0)-spaces, being retracts of the product X x Y. Since
all points of the product X x Y have character 7, either X or Y contains no point of character < 7.
We lose no generality assuming that X is such a space. Then, X, being a uniform-by-character compact
zero-dimensional AE(0)-space of weight 7, is homeomorphic to the Cantor cube {0,1}” = M, according
to the S¢epin characterization of {0,1}7. This completes the proof of Division Theorem for Cantor cubes.

By analogy, the Division Theorem for Tychonov cubes can be derived from Séepin’s characterization
of Tychonov cubes. 0

2. DI1VISION AND k-ROOT THEOREMS FOR THE HILBERT CUBE

From now on all topological spaces are separable and metrizable. Observe that Theorems 1 and 2 do
not cover the case of the Hilbert cube Q = I, where I = [0,1]. This is not incidental because without
any restrictions the k-th Root and Division Theorems for the Hilbert cube are not true. A suitable
counterexample is due to Singh [Singh] who constructed a compact absolute retract S such that S x S
and S x [0,1] are homeomorphic to @ but S is not homeomorphic to . Singh’s space S contains no
topological copy of the 2-disk I? and hence does not possess the Disjoint Disks Property.

We recall that a space X has the Disjoint Disks Property (briefly, DDP) if any two maps f,g: > — X
from a 2-dimensional cube can be uniformly approximated by maps with disjoint images. This property
was introduced by Cannon [Cannon| and is crucial in the topological characterization of finite-dimensional
manifolds (see [Dav]).

In spite of Singh’s counterexample, some restricted forms of the k-th Root and Division Theorems
still hold for the Hilbert cube. The restrictions involve the Disjoint Disk Property and the countable-
dimensional Approximation Property, which is a particular case of P-Approximation Property.

We shall say that a topological space X has a P-Approzimation Property (briefly, P-AP) where P is
a family of subsets of a space X, if for each map f : K — X defined on a compact polyhedron K and
each open cover U of X there is a map f': K — X such that f/(K) € P and f’ is U-near f in the sense
that for each point = € K the set {f(x), f/(x)} lies in some set U € U.

If P is the family of finite-dimensional (resp. countable-dimensional, weakly infinite-dimensional)
subspaces of X, then we shall refer to the P-AP as fd-AP (resp. cd-AP, wid-AP). We recall that a space
X is countable-dimensional if X is the countable union of finite-dimensional subspaces.

All these approximation properties follow from Borsuk’s property (A) (see [Bor, §VII]. We recall that
a space X has the property (A) if for any point € X and a neighborhood U C X of x there is a
neighborhood V' C U of x such that any compact subset K C V is contractible in a subset H C U having
dimension dim(H) < dim(K) + 1. It follows from (the proof of) Theorem VIL.2.1 of [Bor| that each
metrizable space with the property (A) has fd-AP. Therefore these properties are related as follows:

(A) = (fd-AP) = (cd-AP) = (wid-AP).

It is clear that the Hilbert cube @ has the property (A) and consequently all weaker approximation
properties.

On the other hand, it is easy to construct a compact AR without wid-AP: just consider the space
I? U, Q obtained by gluing the 2-disk to the Hilbert cube @ along a surjective map ¢ : J — Q of an arc
J C I?\ OI*. Replacing the Hilbert cube by the 4-dimensional cube I* we can construct a 4-dimensional
absolute retract without property (A). Replacing @ by a countable-dimensional infinite-dimensional
(resp. weakly infinite-dimensional uncountable-dimensional) absolute retract we can construct a compact
absolute retract having cd-AP but not fd-AP (resp. wid-AP but not cd-AP).

It turns out that the k-th Root Theorem for the Hilbert cube holds for spaces possessing DDP and
cd-AP. The following four theorems are the main results of the paper and will be proved in Section 6 and
7.

Theorem 4 (k-th Root Theorem for the Hilbert cube). A topological space X with DDP and cd-AP is
homeomorphic to the Hilbert cube Q if some finite power X* of X is homeomorphic to Q.
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This theorem will be applied to prove another

Theorem 5. Let X be a space having cd-AP. If some finite power X* of X is homeomorphic to Q, then
both X2 and X x I are homeomorphic to Q.

The situation with Division Theorem for the Hilbert cube is more delicate. On one hand, we have a
negative result.

Theorem 6. There is a countable family X of spaces possessing DDP and fd-AP such that

(1) the square X x X of any space X € X is not homeomorphic to Q;
(2) the product X x'Y of any two different spaces X, Y € X is homeomorphic to Q.

On the other hand we have a positive result showing that the family X from the preceding theorem
cannot be uncountable.

Theorem 7 (Collective Division Theorem for the Hilbert cube). An uncountable family X of topological
spaces with DDP and c¢d-AP contains a space X € X homeomorphic to the Hilbert cube QQ provided the
product X XY of any different spaces X, Y € X is homeomorphic to Q.

3. HOMOLOGICAL CHARACTERIZATIONS OF THE HILBERT CUBE

The proofs of Collective Division and k-Roots Theorems for the Hilbert cube rely on homological
characterizations of @, due to Daverman and Walsh [DW]. First we recall some notation.

We use singular homology H,(X;G) with coefficients in an abelian group G. By H,(X;G) we shall
denote the singular homology of X, reduced in dimension zero. If G = Z, then we omit the symbol of
the group and will write H,(X) in place of H,(X;Z).

A closed subset A of a space X is called

e a Z,-set if every map f : I"™ — X can be approximated by maps into X \ A;

e a homotopical Zy-set if for every open set U C X the relative homotopy groups 7, (U, U \ A) are
trivial for all k;

o a G-homological Z-set if for every open set U C X the relative homology groups H, (U,U\A;G)
are trivial for all k;

e a homological Z.-set if it is a Z-homological Z..-set in X.

In [DW] homological Z..-sets are referred to as closed sets with infinite codimension.

A point z € X is called a (homotopical, homological) Zs-point if the singleton {x} is a (homotopical,
homological) Z.-set in X. The Excision Axiom for singular homology [Hat, 2.20] implies that a point
z € X is a G-homological Zos-point if and only if Hy(X,X \ {z};G) = 0 for all k. It is well-known
that each point of the Hilbert cube is a Z..-point and consequently, a G-homological Z..-point for any
non-trivial abelian group G.

Theorem 2.3 of [To78] implies that a closed subset A of an ANR-space is a Z.-set if and only if it
is a homotopical Z,.-set. Also each homotopical Z..-set is a homological Z.,-set. Many examples of
homological Z.-sets in @), which are not homotopical Z.-sets can be constructed using the following
fact proved in Corollary 2.4 of [DW]:

Proposition 1 (Daverman-Walsh). Assume that X is a locally compact ANR whose any point is a
homological Z,-point. Then each closed finite-dimensional subset of X is a homological Z-set.

The proof of this proposition follows from a characterization of G-homological Z.,-sets proved in
Proposition 2.3 of [DW].

Proposition 2 (Daverman-Walsh). A closed subset A of a locally compact ANR-space X is a G-
homological Z-set if each point a € A is a G-homological Zo-point in X and has arbitrarily small
neighborhoods U, C A whose relative boundary in A are G-homological Zoo-sets in X.

In fact, we shall derive a bit more from this proposition. Namely, that each closed countable-
dimensional subset of @ is a homological Z..-set. According to [En, 7.1.9] each completely-metrizable
countable-dimensional space X has transfinite inductive dimension trind (X') # oo defined as follows. We
put trind (X) = —1 if and only if X = (). Given an ordinal o we write trind (X) < a if X has a base of
the topology cousisting of open sets U C X whose boundaries have transfinite dimension trind (OU) < «.
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The transfinite inductive dimension of a space X equals the smallest ordinal « with trind (X) < « if such
ordinal « exists and trind (X) = oo otherwise.

Proposition 3. Assume that X is a locally compact ANR whose points all are G-homological Z~-points
for some non-trivial abelian group G. Then each closed countable-dimensional subset A C X is a G-
homological Z.-set in X.

Proof. According to [En, 7.1.9], the space A, being completely-metrizable and countable-dimensional,
has transfinite inductive dimension trind (A) # oco. So, we shall prove the proposition by transfinite
induction on « = trind (4). For @ = —1 the proposition is trivial. Assume that for some ordinal « the
assertion is true for all closed subsets A C X with trind (A) < a. Assuming that A is a closed subset
of X with trind (A) = a we get that A has a base of the topology consisting of open sets U C A whose
relative boundary in A have transfinite dimension trind (0U) < «. By inductive hypothesis each set U
is a G-homological Z,.-set in X. Applying Proposition 2 we conclude that A is a G-homological Z.-set
in X. g

We shall say that a space X has Z-AP (resp. HZ-AP) if it has P-AP for the class P of (homological) Z .-
sets in X. The latter means that each map f : K — X from a compact polyhedron can be approximated
by a map whose image is a (homological) Z..-set in X.

By a Q-manifold we understand a metrizable separable space M such that each point x € X has an open
neighborhood U C M homeomorphic to an open subset of Q. It is clear that each @-manifold is a locally
compact ANR. By Theorem 22.1 of [Chap], each compact contractible @-manifold is homeomorphic to

Q.
The following Z-AP characterization of @-manifolds is due to Toruniczyk [To80].

Theorem 8 (Toruniczyk). A space X is a Q-manifold if and only if X is a locally compact ANR possessing
Z-AP.

A homological version of this characterization was proved by Daverman and Walsh in [DW].

Theorem 9 (Daverman-Walsh). A space X is a Q-manifold if and only if X is a locally compact ANR
possessing DDP and HZ-AP.

Combining this characterization theorem with Proposition 3 we get a local characterization of Q-
manifolds whose fd-AP version can be found in Theorem 6.1 of [DW].

Theorem 10. A space X is a Q-manifold if and only if
(1) X has DDP;
(2) X has cd-AP; and
(3) each point of X is a homological Z-point.

4. ON CELL-LIKE MAPS BETWEEN (Q-MANIFOLDS

In this section we shall apply the Characterization Theorem 10 to obtain some new characterizations
of @Q-manifolds, involving cell-like maps. We recall that a map 7 : X — Y is called
e proper if the preimage 7~ (K) of every compact set is compact;
e cell-like if 7 is proper and the preimage 7~ !(y) of every point y € Y has trivial shape;
o countable-dimensional if the preimage 7~1(y) of every point y € Y is countable-dimensional.

Theorem 11. A space X is a Q-manifold if and only if X has DDP, cd-AP and X is the image of a

Q-manifold M under a countable-dimensional cell-like map 7 : M — Q.
This theorem can be easily derived from Theorem 10 and

Proposition 4. Let 7 : M — X be a cell-like map between locally compact ANRs and N = {zx € X :
|7~ (x)| > 1} be the nondegeneracy set of w. Then
(1) a point x € X is a homological Zs-point in X if its preimage 7~ (x) is a homological Z.-set in
M;
(2) a point x € X is a homological Z-point in X if its preimage 7~ '(z) is countable-dimensional
and each point z € m—1(x) is a homological Zy,-point in M.
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(3) If the space Ny is finite-dimensional (resp. countable-dimensional) and the space M has fd-AP
(resp. c¢d-AP), then X has fd-AP (resp. cd-AP);

Proof. (1) The first item is well-known and easily follows from the Approximate Lifting Theorem 16.7
[Dav] for cell-like maps.

(2) Assume that for some point z € X the preimage 7~ 1(z) is countable-dimensional and each point
z € 7~ 1(x) is a homological Z..-point. By Proposition 3, the set 7—!(z) is a homological Z..-set in M
and by the preceding item the point x is a homological Z,,-point in X.

(3) Assume that N is finite-dimensional and M has fd-AP. To show that X has the fd-AP, fix a
map f : K — X of a compact polyhedron and an open cover &/ of X. Let V be an open cover of X
whose star St(V) refines U. By Approximate Lifting Theorem 16.7 [Dav] for cell-like maps, there exists
a map g : K — M such that mo g is V-near f. Since M has fd-AP, the map g can be approximated
by a map ¢’ : K — M such that ¢'(K) is finite-dimensional and ¢’ is 7=1(V)-near g. Then the map
fl=mog is St(V)-near f. It remains to show that f/'(K) is finite-dimensional. Write f'(K) as the union
f(K) = (f/(K)NNz)U(f'(K)\Nx). The space f'(K)N N, is finite-dimensional. On the other hand, the
restriction of 7|M \ 7 1(N,) : M\ 7 1(N,) — X\ N, of 7, being a proper injective map, is an embedding
and thus dim(f/(K)\ Ny) = dim (7(¢/(K)\7 ! (Nx)) = dim(¢'(K)\7~(N)) < dim(¢'(K)) < co. Then
f'(K) is finite-dimensional, being the union of two finite-dimensional subspaces (see Theorem 1.5.8 [En]).

The cd-case of (3) can be proved analogously. O

Theorem 10 combined with Proposition 4(3) implies another cell-like characterization of @-manifolds.

Theorem 12. A space X with DDP is a Q-manifold if and only if X is the image of a Q-manifold
M wunder a countable-dimensional cell-like map © : M — X whose non-degeneracy set N, = {z € X :
|7~ (x)| > 1} is countable-dimensional.

5. D1sJjoINT DISK-ARC PROPERTY

Singh’s example of a fake Hilbert cube [Singh| shows that HZ-AP does not imply DDP and hence DDP
cannot be omitted from Theorems 9-12. Nevertheless, HZ-AP implies DDAP, a bit weaker property than
DDP.

Following [Dav| we say that a space X has the Disjoint Disk-Arc Property (briefly DDAP) if any maps
f:I? — X, g:I— X can be approximated by maps f': [? — X and ¢’ : [ — X with f'(I?)Nng'(I) = 0.
The following lemma linking DDP with DDAP can be proved by the argument of Proposition 26.6 of
[Dav].

Proposition 5. If an ANR-space X has DDAP, then for any ANR-space Y having no isolated point the
product X XY has DDP.

Proposition 6. Fach space X with HZ-AP has DDAP.

Proof. Take any maps f:I?> — X and ¢ : I — X. Since X has HZ-AP, the map f can be approximated
by a map f’: I? — X whose image Z = f'(I?) is a homological Z..-set in X. Next, we shall approximate
the map ¢’. Given an open cover U of X we will construct a map ¢’ : I — X \ Z which is U-near g in the
sense that for any point ¢ € I the set {g(t), ¢’(¢)} lies in some U € U. By the compactness of the interval
[0,1] there is a partition 0 = ¢y < ¢1 < --- < ¢, = 1 such that for every ¢ < n the image g([t;—1,t;]) lies
in some set U, elU.

Since Ho(U;,U; \ Z) = 0, the path-connected component of U; containing the point g(t;) meets the
set U; \ Z at some point ;. We claim that the points z;_1, z; lie in the same path-connected component
of U; \ Z. If the converse were true, then we would get a nontrivial cycle « = x;—1 — x; in Ho(U; \ Z).
On the other hand, this cycle is the boundary of an obvious 1-chain § in U; and thus vanishes in the
homology group Hy(U;). But this contradicts the exactness of the following sequence

0= Hl(Ui, Ul \ Z) — Ho(Ui \ Z) — HQ(Ul)
for the pair (U;,U; \ Z).

Therefore x;_1,x; lie in the same path-connected component of U; \ Z, ensuring the existence of a
continuous map g; : [ti—1,t;] — U;\ Z with g;(t;—1) = x;—1 and g;(¢;) = x;. The maps g;, i < m, compose
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a single continuous map ¢’ : [0,1] — X \ Z = X \ f/(I?) which is U-near to g, confirming the DDAP of
X. U

Therefore for a locally compact ANR-space whose points all are homological Z.,-points we have the
following implications between different P-Approximation Properties:

(wid-AP) «—— (cd-AP) —— (HZ-AP) —— (DDAP)

I I I

(A) ——— (Z-AP) —— (DDP)
6. DIVISION AND kTH ROOT THEOREMS FOR (Q-MANIFOLDS

In this section we shall prove kth Root and Collective Division Theorems for @-manifolds, whose
partial cases are Theorems 4 and 7. The proofs of these theorems essentially rely on the characterization
Theorem 10 and the Kiinneth formula expressing homology of the product X x Y of two spaces via
homology of the factors X,Y. We shall use the following relative version of the Kiinneth formula that
can be found in Theorem 10 [Spa, §5.3].

Relative Kiinneth Formula: For open sets U C X, V C Y in topological spaces X,Y and a non-
negative integer n the following exact sequence holds:

0= [HX,U)@ HY,V)]n = Hy(X x Y, X x VUU XY) = [H(X,U) * HY,V)]p_1 — 0

Here
[H(X, U)®H(Y7V)]n = Ditj=n Hi(X7 U)(X)Hj(Y,V),
[H(X,U)«HY,V)lho1 = ®itj=n—1 Hi(X,U)«H;(Y,V)
where G ® H and G x H stand for the tensor and torsion products of abelian groups G, H, respectively
(see [Spa]). We need three elementary properties of tensor and torsion products:
e (G ® Z is isomorphic to G;
e G® H # 0 if both G and H contain elements of infinite order; and
e (G H contains an element of finite order n if and only if both G and H contain such an element
(see Exercise 6 on [Hat, p. 267]).

We shall apply Kiinneth Formula to prove:

Lemma 1. If x is a homological point of a space X, then for any point y of a space Y the pair (x,y) is
a homological Z-point in X X Y.

Proof. We need to check that the groups Hi(X x Y, X x Y \ {(x,y)}) are trivial for all k. This trivially
follows from the Relative Kiinneth Formula and the triviality of the homology groups H;(X, X\ {z}). O

Our next corollary of the Kiinneth formula is less trivial.

Proposition 7. A closed subset A of a space X is a homological Zs-set in X provided A* is a homological
Zoo-set in X* for some finite number k.

Proof. First we show that the groups H, (U,U \ A) are torsion groups for all n € w and all open sets
U C X. Otherwise, for some n we can find an element o € H,, (U, U\ A) of infinite order. Then a® a is a
non-zero element of infinite order in H,, (U, U\ A) ® H,(U,U\ A). Now the Kiinneth formula implies that
the homology group Ha, (U2, U?\ A?) has non-zero element of infinite order. Proceeding by induction we
can show that for each i € N the homology group H;, (U?, U*\ A*) contains a non-zero element of infinite
order which is not possible as A* is a homological Z..-set in X*.

This proves that all the homology groups H,(U,U \ A) are torsion groups. Assuming that A is not a
homological Z-point, we can find n € w and an open set U C X such that H,(U,U \ A) is not trivial
and thus contains an element of a prime order p. Then the torsion product H,(U,U \ A) x H,(U,U \ A)
also contains an element of order p. The exact sequence

0— [HUU\A) @ HU,U\ Alans1 — Hany1 (U2, U\ A?) —
— [HU, U\ A)« HU, U\ A)]an — 0
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from the Kiinneth formula implies that the group Ha,1(U?,U? \ A?) contains an element of order p
(here we aso use the fact that the tensor product [H(U,U \ A) @ H(U,U \ A)]an+1 is a torsion group).
Repeating this argument again, we can prove that the group Hz,.2(U3, U3\ A%) contains an element of
order p. Proceeding by induction we can prove that for any i € N the group H;, ;1 (U% U*\ A?) contains
a non-zero element of order p which is not possible as A* is a homological Z..-set in X*. 0

Combining Theorem 10 with Proposition 7 we obtain the k-th Root Theorem for Q-manifolds.

Theorem 13. A space X with DDP and cd-AP is a Q-manifold if and only if the power X* is a
Q-manifold for some finite k.

Since each compact contractible Q-manifolds is homeomorphic to @, this theorem implies the k-Root
Theorem 4 for the Hilbert cube. For the same reason Theorem 5 follows from

Theorem 14. If some finite power a space X with cd-AP is a Q-manifold, then both X? and X x I are
Q-manifolds.

Proof. Assuming that X* is a Q-manifold for some finite k, we conclude that X is a locally compact ANR
and each point of X is a homological Z..-point, see Proposition 7. This property combined with cd-AP
of X implies HZ-AP by Proposition 3. In its turn, HZ-AP of X implies DDAP for X by Proposition 6
while DDAP of X implies DDP for X2 and X x I according to Proposition 5. By Lemma 1, all points
in the spaces X2 and X x I are homological Z..-points. Therefore X? and X x I are locally compact
ANR-spaces possessing DDP, ¢d-AP, and having all points as homological Z..-points. By Theorem 10,
these spaces are @-manifolds. O

Since each compact contractible Q-manifold is homeomorphic to @, Collective Division Theorem 7 for
the Hilbert cube follows from

Proposition 8. An uncountable family X of locally compact ANR-spaces contains a Q-manifold provided

(1) each space X has DDP and cd-AP and
(2) the product X x'Y of any different spaces X,Y € X is a Q-manifold.

Proof. Suppose to the contrary that none of the spaces X € X is a -manifold and apply the Char-
acterizing Theorem 10 to find a point ax € X which fails to be a homological Z.-point in X. This
means that the homology group Hy(X, X \ {ax}) is not trivial for some k = k(X). Since the family
X is uncountable there are two different spaces X,Y € X and two numbers k,n such that the groups
Hi (X, X\ {ax}) and H,(Y,Y \ {ay}) contain elements of the same order p, where either p = co or p is
a prime number. If p = oo, then the tensor product Hi(X, X \ {ax}) ® H,(Y,Y \ {ay}) is not trivial
and hence the group Hy1n(X x Y, X x Y \ {(ax,ay)}) is not trivial by the Kiinneth Formula, which is
impossible since (ax,ay) is a (homological) Zs.-point in the @-manifold X x Y.

If p is a prime number, then the torsion product Hy (X, X \ {ax}) * H,(Y,Y \ {ay}) is not trivial and
hence the group Hyin11(X x Y, X XY \ {(ax,ay)}) is not trivial by the Kiinneth Formula, which is
impossible since (ax,ay) is a (homological) Z..-point in the @-manifold X x Y.

The obtained contradiction shows that some space X € A must be a Q-manifold. O

7. EXAMPLES OF FAKE HILBERT CUBES

In this section we survey some known examples of fake Hilbert cubes. The first example is due to
Singh [Singh].

Example 1 (Singh). There exists a compact space S possessing the following properties:

(1) Sis a compact AR;

(2) Sis the image of @ under a cell-like map 7 : @ — S such that the set N, = {z € X : |7~ !(z)| > 1}
is countable and the preimage 7~ 1(y) of every point y € N, is an arc;

(3) Each compact ANR-subspace of dimension > 2 in S coincides with S;

(4) Each point of S is a homological Z-point and each point x € S\ N, is a Z-point;

(5) S has fd-AP and consequently has HZ-AP and DDAP;

(6) S fails to have DDP and hence is not homeomorphic to @; and

(7) S? and S x I are homeomorphic to Q.
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The items (1)—(4) were established by Singh in [Singh] while (5)—(7) follow from the preceding items
and Propositions 4-5.
Another example of a fake Hilbert cube was constructed by Daverman and Walsh in [DW, 9.3].

Example 2 (Daverman-Walsh). There exists a compact space X possessing the following properties:
(1) X is a compact AR;

(2) X is the image of @ under a cell-like map 7 : Q@ — X whose non-degeneracy set N, is countable;

(3) Each point of X is a Z.-point and thus a homological Z..-point;

(4) X has fd-AP and consequently has HZ-AP and DDAP;

(5) X fails to have DDP and hence is not homeomorphic to @; and

(6) X2 and X x I are homeomorphic to Q.

Our last example yields a bit more than is required in Theorem 6. We shall construct a series of
compact absolute retracts (A,) parameterized by prime numbers p such that no finite power of A, is
homeomorphic to () while all the products A, x A, for distinct p # ¢ are homeomorphic to the Hilbert
cube.

Below

Lo z{ze(C:zpk:lforsomekEw}

denotes the quasicyclic p-group.

Example 3. There is a family of pointed compact absolute retracts (A, *,) indexed by prime numbers
p such that
(1) Ap\ #p is a Q-manifold with the unique non-trivial homology group Hi (A \ *p) = Zpes;
(2) the point *, is not a homological Z,-point in Ap;
(3) no finite power A’; is a Q-manifold;
(4) the space A, has the property (A) and consequently has cd-AP;
(5) the space A, has DDAP and the square A2 has DDP; and
) A, x Ay is homeomorphic to the Hilbert cube for any prime numbers p # q.

Proof. Let T = {z € C: |z| = 1} stand for the unit circle in the complex plane. Given a prime number p
consider the space X, = w x [0,1] x T and its quotient space Y, = X,,/~ by the equivalence relation ~
defined as follows: (n,t,z) ~ (m,7,y) if and only if one of the following conditions holds:

(n,t,z) = (m,7,y);

m=mn,t=7=1and 2P = yP;

m=n+1,t=1,7=0, and 2P = y; or

en=m+1,t=0,7=1, and y* = z.

Thus the space Y, consists of an infinite sequence of cylinders of the map 2P : T — T, glued together.
It is routine to check that the higher homology groups Hy(Y,), k > 1, of the space Y, are trivial while

H,(Y,) = Zp~. It is easy to see that the one-point compactification ¥, = Y, U {oo} is a two-dimensional

absolute retract. Then the quotient space A, = SN/; x Q/{o0} x Q is an absolute retract, too. The point
*p, = {{oo} X @} is the distinguished point of A,,.

We now check that the pointed spaces (A, *p) satisty the conditions (1)—(6):

(1) By Edwards’ ANR-Theorem [Chap, 44.1], the complement A,\{*,} = ¥, X Q is a Q-manifold. Being
homotopy equivalent to Y,, it has a unique non-trivial homology group Hi (A, \ {*,}) = H1(Yy) = Zpe.

(2) The exact sequence of the pair (Ap, Ay \ {*,})

0= Ha(Ap) = Ha(Ap, Ap \ {#p}) — Hi1(Ap \ {#p}) — H1(Ap) =0

implies that Ha(Ap, Ap \ {#p}) = Zpe # 0 and thus %, fails to be a homological Z..-point in A,.

(3) By Proposition 7, the singleton {,}* fails to be a homological Z..-set in A’; for any finite k, and
hence A’; cannot be a @-manifold.

(4) The first item implies that A, has the property (A) at each point x # *,. To check that property
at the point #,, take any neighborhood U C A, of %, and find a neighborhood V' C U of %, that is
contractible in U (such a neighborhood exists because A, is an AR). Given any compact set K C V let
h : K x[0,1] — U be a map contracting K to #, (in the sense that h(x,0) = x and h(z,1) = %, for
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all z € K. Consider the closed set F = h™!(x,) C K x [0,1] and the restriction g = h|K x I \ F of
h, mapping the locally compact space K x I\ F into the @-manifold U \ {*,}. Applying Theorem 18.2
of [Chap], approximate g by an embedding ¢’ : K x I \ F — U \ {*,} so near the map ¢ that the map
h: K x I — U defined by h|K x I\ F = ¢’ and h|F = h|F is continuous. Then h: K x I — U is a

contraction of K in U such that dim(h(K x I)) < dim(K x I) < dim(K) + 1, which means that A, has
the property (A). By Theorem VIIL.2.1 of [Bor] this space has fd-AP and hence cd-AP.

(5) To prove the DDAP of A, fix an open cover U of A, and two maps f: I? — A, and g: [ — A,.
Repeating the argument of the preceding item, we can approximate f by a map f’: I? — A, such that
F/(I*)\ {*p} is a Zoo-set in the Q-manifold A, \ {*,}. Because the point #, is not locally separating in A,
the map g can be approximated by a map ¢’ : I — A, \ {*,}. Moreover, since f’(I?)\ {*,} is a Zo-set
in A, \ {*,}, we can additionally assume that ¢’(I) N f’(1?) = 0, which means that A, has DDAP. By
Proposition 5, the square Af, has DDP.

(6) Finally, we shall prove that for distinct prime numbers p # ¢ the product A, x A, is homeomorphic
to the Hilbert cube Q. Being the product of two spaces with cd-AP, this space has cd-AP. By Proposition 5
this product has DDP. According to Theorem 10 it remains to check that each point (z,y) of A, X A,
is a homological Z-point. This is trivial if (z,y) # (%p,*¢). In case (x,y) = (%, *,) We may use item
(1), the equality Zpoo ® Zgoo = 0 = Zpo * Zgoo, and the Kiinneth Formula, to show that (xp,%,) is a
homological Z.-point in A, x A,.

8. SOME OPEN PROBLEMS
Problem 1. Can cd-AP in characterization Theorem 10 be replaced by wid-AP?
Problem 1 is related to another
Problem 2. Is each closed weakly-infinite dimensional subset A of Q@ a homological Z-set in Q7

Note that the k-Root and Division Theorems hold also for some non-locally compact spaces, for
example for the Baire space N“.

Theorem 15 (Division Theorem for the Baire space). If the product X XY of two spaces is homeomorphic
to N¥, then X orY s homeomorphic to N“.

This theorems easily follows from a topological characterization of the Baire space N* due to Alek-
sandrov and Urysohn (see [Ke, 7.7]): A topological space X is homeomorphic to N“ if and only if X is a
Polish zero-dimensional nowhere locally compact space.

In light of this result it is natural to ask if the k-th Root and Division Theorems are true for the
countable product s = (0,1)“ of open intervals. As expected, the answer is negative.

Example 4. Take an arc J C @ which is not a Z.-set in () and consider the quotient map 7 : @ — Q/J.
Then X = 7(s) is not homomorphic to s but its square X? is homeomorphic to s. This can be proved
by the argument of [Bow].

Nonetheless it may happen that the k-th Root and Division Theorems for s hold in some restricted
form.

Problem 3. Find conditions on a space X guaranteeing that X is homeomorphic to s if some finite
power X* is homeomorphic to s.

Observe that the finite power is an example of a normal functor on the category of compact Hausdorff
spaces, see [TZ]. Can the k-Root Theorem for the Hilbert cube be extended to some functor distinct for
the functor of finite power?

Problem 4. Let F : Comp — Comp be a functor such that a compact space X with DDP and cd-AP is
homeomorphic to Q if F(X) is homeomorphic to Q. Is F isomorphic to a power functor?

Even for the functor F' = SP? of symmetric square the answer is unknown. Let us recall that
the symmetric square of a compact space X is the quotient space X2/. by the equivalence relation

(:E,y) ~ (yv'r)
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Problem 5. Is a compact AR-space X with DDP and cd-AP homeomorphic to Q if its symmetric square
SP2%(X) is homeomorphic to Q.

In light of this problem let us mention that the quotient space X = @ x [—1,1]/Q x {0} is an AR-space
with the property (A) whose symmetric square SP?(X) is homeomorphic to Q, see [IMN]. However the
space X contains a separating point and hence fails to have DDP and be homeomorphic to Q.
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