ON UNIVERSALITY OF FINITE PRODUCTS OF POLISH SPACES

T. BANAKH, R. CAUTY, K. TRUSHCHAK, AND L. ZDOMSKYI

ABSTRACT. We introduce and study the n-Dimensional Perfect Homotopy Approximation Property (briefly n-PHAP) equivalent to the discrete n-cells property in the realm of LCn-spaces. It is shown that the product $X \times Y$ of a space X with n-PHAP and a space Y with m-PHAP has $(n+m+1)$-PHAP. We derive from this that for a (nowhere locally compact) locally connected Polish space X without free arcs and for each $n \geq 0$ the power X^{n+1} contains a closed topological copy of each at most n-dimensional compact (resp. Polish) space.

A topological space X is called \mathcal{C}-universal, where \mathcal{C} is a class of spaces, if X contains a closed topological copy of each space $C \in \mathcal{C}$. By \mathcal{M}_0 and \mathcal{M}_1 we denote the classes of metrizable compacta and Polish (= separable complete-metrizable) spaces, respectively. For a class \mathcal{C} of spaces by $\mathcal{C}[n]$ we denote the subclass of \mathcal{C} consisting of all spaces $C \in \mathcal{C}$ with $\dim C \leq n$. All topological spaces considered in the paper are metrizable and separable, all maps are continuous.

In terms of the universality, the classical Menger-Nöbeling-Pontrjagin-Lefschetz Theorem states that the cube $[0,1]^{2n+1}$ is $\mathcal{M}_0[n]$-universal for every $n \geq 0$. It is well known that the exponent $2n+1$ in this theorem is the best possible: the Menger universal compactum μ_n cannot be embedded into $[0,1]^{2n}$. Nonetheless, P. Bowers [Bo1] has proved that the $(n+1)$-th power D^{n+1} of any dendrite D with dense set of end-points does be $\mathcal{M}_0[n]$-universal for every non-negative integer n. Moreover, any such a dendrite D contains a locally connected G_{δ}-subspace G whose $(n+1)$-th power G^{n+1} is $\mathcal{M}_1[n]$-universal for every n, see [Bo1]. Generalizing this Bowers’ result we shall prove that the power X^{n+1} of any locally connected Polish space X without free arcs is $\mathcal{M}_0[n]$-universal for all $n \geq 0$; moreover the power X^{n+1} is $\mathcal{M}_1[n]$-universal provided X is nowhere locally compact.

The standard way to prove the $\mathcal{M}_1[n]$-universality of a Polish space X with nice local structure is to verify the discrete n-cells property for X, see [Bo1]. We remind that a space X has the discrete n-cells property if for any map $f : N \times [0,1]^n \to X$ and any open cover U of X there is a map $g : N \times [0,1]^n \to X$ such that g is U-near to f and the collection $\{g(\{i\} \times [0,1]^n)\}_{i \in \mathbb{N}}$ is discrete in X.

Let us recall that two maps $f, g : Z \to X$ are called U-near with respect to a cover U of X (this is denoted by $(f,g) < U$) if for any point $z \in Z$ there is an element $U \in U$ such that $\{f(z), g(z)\} \subseteq U$. Two maps $f, g : Z \to X$ are called U-homotopic if they can be linked by a homotopy $\{h_t : Z \to X\}_{t \in [0,1]}$ such that $h_0 = f$, $h_1 = g$ and for any $z \in Z$ there is $U \in U$ with $\{h_t(z) : t \in [0,1]\} \subseteq U$. It is clear that U-homotopic maps are U-near while the converse is not true in general.

Unfortunately, the discrete n-cells property is applicable only for spaces having nice local structure. To overcome this obstacle we introduce a stronger property, called n-PHAP, which is equivalent to the discrete n-cells property in the realm of LCn-spaces. We remind that a space X is called an LCn-space, $n \geq 0$, if for any point $x \in X$ and any neighborhood $U \subset X$ of x there is a neighborhood $V \subset X$ of x such that any map

1991 Mathematics Subject Classification. 57N20; 54C10; 54C25; 54C55; 54F45; 55M10; 55M15; 55P99.
Key words and phrases. universality of products, discrete n-cells property.
f : ∂I^n → V from the boundary of the n-dimensional cube I^n = [0, 1]^n can be extended to a map f : I^n → U defined on the whole n-cube I^n.

All simplicial complexes considered in this paper are countable and locally finite. We shall identify simplicial complexes with their geometric realizations.

Definition 1. A space X is defined to have the n-dimensional perfect homotopy approximation property (briefly n-PHAP) if for any map f : K → X from a simplicial complex K with dim K ≤ n and any open cover U of X there is a perfect map g : K → X, U-homotopic to f.

We remind that a map f : X → Y is perfect if f is closed and the preimage f^{-1}(y) of any point y ∈ Y is compact. According to [En, 3.7.18], a map f : X → Y between metrizable spaces is perfect if and only if f is proper in the sense that the preimage f^{-1}(K) of any compact subset K ⊂ Y is compact.

A map f : X → Y is called simplicially approximable if for any open cover U of X there is a simplicial complex K and two maps p : X → K and q : K → Y such that the composition q ◦ p is U-homotopic to f. It follows from Corollary 6.6 [BP, p.80] that each map into an absolute neighborhood retract is simplicially approximable.

Some basic properties of spaces with n-PHAP are described by the following theorem which is the main result of this paper.

Theorem 1. Let n, m be non-negative integers.

1. If a space X has n-PHAP, then each open subspace of X has that property too.
2. A space X has n-PHAP provided X admits a cover by open subspaces with n-PHAP.
3. If a space X has n-PHAP, then X has the discrete n-cells property.
4. An LC^n-space X has n-PHAP if and only if X has the discrete n-cells property.
5. If X is a space with n-PHAP and Y is a space with m-PHAP, then their product X × Y has (n + m + 1)-PHAP.
6. If a Polish space X has n-PHAP, then for any open cover U of X and any simplicially approximable map f : P → X from a Polish space P with dim P ≤ n there is a perfect map g : P → X, U-homotopic to f.
7. If a Polish space X has n-PHAP, then for any open cover U of X and any simplicially approximable map f : P → X from a Polish space P with dim P ≤ n there is a closed embedding g : P → X, U-near to f.
8. If a Polish space X has n-PHAP, then X is M_1[n]-universal.

Statements 4, 5, and 8 of Theorem 1 imply

Corollary 1. If X is a Polish LC^n-space with the discrete n-cells property, then for every k ≥ 0 the power X^{k+1} is M_1[nk + n + k]-universal.

In its turn, the last corollary implies another two corollaries generalizing the mentioned Bowers’ results on the universality of finite powers of dendrites.

Corollary 2. If X is a locally connected Polish nowhere locally compact space, then for every k ≥ 0 the power X^{k+1} is M_1[k]-universal.

Proof. The Polish space X, being locally connected, is locally path-connected and hence LC^0 according to the classical Mazurkiewicz-Moore-Menger Theorem, see [Ku]. It is well-known (and easy) that the discrete 0-cells property is equivalent to the nowhere local compactness. In this situation it is legal to apply Corollary 1 to conclude that the power X^{k+1} is M_1[k]-universal for every k ≥ 0. □
We say that a topological space X has no free arcs if no open subset of X is homeomorphic to the open interval $(0, 1)$.

Corollary 3. If X is a locally connected Polish space without free arcs, then for every $k \geq 0$ the power X^{k+1} is $\mathcal{M}_0[k]$-universal.

Proof. Corollary 3 will follow from Corollary 2 as soon as we prove that each locally connected Polish space X without free arcs contains a locally connected nowhere locally compact Polish subspace Y.

Replacing X by any of its connected component, we can assume that X is connected. Then by [Wy, Ch.VIII.9] the space X admits a compatible metric d such that any points $x, y \in X$ can be linked by an arc whose diameter does not exceed $2d(x, y)$. Fix a countable dense subset $D \subset X$ and for any points $x, y \in D$ fix an arc $J(x, y) \subset X$ with $\text{diam } J(x, y) \leq 2d(x, y)$. It is easy to see that any subspace $Y \subset X$ containing the set $A = \bigcup_{x,y \in D} J(x, y)$ is locally path-connected. Since the Polish space X has no free arcs, the Baire Theorem implies that the complement $X \setminus A$ is dense in X. Let $C \subset X \setminus A$ be a countable dense set. Then $Y = X \setminus C$ is a locally connected nowhere locally compact Polish subspace of X. \hfill \Box

1. **Proof of Theorem 1**

Our notations are standard. In particular, by \bar{A} or $\text{cl}_X(A)$ we denote the closure of a set A in a topological space X; $\text{cov}(X)$ stands for the family of all open covers of a space X. For a cover U of X and a subset $A \subset X$, let $\text{St}(A, U) = \{U \in U : U \cap A \neq \emptyset\}$, $\text{St}^1(U) = \text{St}(U) = \{\text{St}(U, U) : U \in U\}$, and $\text{St}^n(U) = \text{St}(\text{St}^{n-1}(U))$ for $n \geq 1$. Given two families U, V of subsets of a space X we write $U \prec V$ if any $U \in U$ lies in some $V \in V$.

For a map $f : Z \to X$ and a family U of subsets of X we put $f^{-1}(U) = \{f^{-1}(U) : U \in U\}$.

For a metric space (X, d) and a point $x_0 \in X$ by $B(x_0, \varepsilon) = \{x \in X : d(x, x_0) < \varepsilon\}$ we denote the open ε-ball centered at x_0. Also we put $\text{mesh } U = \sup_{U \in U} \text{diam } U$ for a cover U of X. A homotopy $h : Z \times [0, 1] \to X$ is called an ε-homotopy if $\text{diam } h(\{z\} \times [0, 1]) < \varepsilon$ for all $z \in Z$.

For a simplicial complex K, denote by $K^{(n)}$ the n-dimensional skeleton of K and let $\text{St}(K) = \{\text{St}(v, K) : v \in K^{(0)}\}$ where $\text{St}(v, K)$ stands for the open star of a vertex v in K. Several times we shall use the following homotopy extension property of simplicial pairs (see Corollary 5 of [Spa, p.112]): If L is a subcomplex of a simplicial complex K, $f : K \to X$ is a continuous map into a space X, and $h : L \times [0, 1] \to X$ is a homotopy with $h(z, 0) = f(z)$ for all $z \in L$, then there is a homotopy $H : K \times [0, 1] \to X$ such that $H|L \times [0, 1] = h$ and $H(z, 0) = f(z)$ for all $z \in K$. If h is a U-homotopy for some open cover U of X, then H can be chosen to be a U-homotopy. If $\text{diam } h(\{x\} \times [0, 1]) < \varepsilon \circ f(x)$, $x \in L$, for some continuous map $\varepsilon : X \to (0, \infty)$, then H can be chosen so that $\text{diam } H(\{x\} \times [0, 1]) < \varepsilon \circ f(x)$ for all $x \in K$.

In the proof of Theorem 1 we shall exploit some known facts about proper maps.

Lemma 1. For a perfect map $f : K \to X$ from a locally compact space K there is an open cover U of X such that each map $g : K \to X$ with $(f, g) \prec U$ is perfect.

Proof. Let \bar{X} be any metrizable compactification of X. It follows from [En, 3.7.21] that the image $f(K)$ of the locally compact space K under the perfect map $f : K \to X$ is a closed locally compact subspace of X. Consequently, $f(K)$, being locally compact, is open in its closure $\text{cl}_{\bar{X}}(f(K))$ in \bar{X} and hence the complement $F = \text{cl}_{\bar{X}}(f(K)) \setminus f(K)$ is closed in \bar{X}. It follows that $\tilde{X} = \bar{X} \setminus F$ is a locally compact space containing X so that
the map $f : K \to X \subseteq \widetilde{X}$ still is perfect. Now it is legal to apply Theorem 4.1 of [Ch] to find an open cover \mathcal{U} of X such that each map $g : K \to \widetilde{X}$ with $\langle f, g \rangle \prec \mathcal{U}$ is perfect. Then the open cover $\mathcal{U} = \{ U \cap X : U \in \mathcal{U} \}$ satisfies our requirements.

Lemma 2. If $f : K \to X$ is a map from a locally compact space K and the restriction $f|L : L \to X$ of f onto a closed subset $L \subseteq K$ is perfect, then $f|\overline{W}$ is perfect for some closed neighborhood \overline{W} of L in K.

Proof. Fix any metric d generating the topology of X and write $K = \bigcup_{i \geq 0} K_i$ as the countable union of an increasing sequence $(K_i)_{i \geq 0}$ of compact subsets such that $K_0 = \emptyset$ and each K_i lies in the interior of K_{i+1}. For each $i \geq 1$ and $z \in K_i \setminus K_{i-1}$ find a neighborhood $O(z) \subset K$ such that $O(z) \subset K_{i+1} \setminus K_{i-1}$ and $f(O(z)) \subset B(f(z), \frac{1}{i}) = \{ x \in X : d(x, f(z)) < \frac{1}{i} \}$. Let \overline{W} be any closed neighborhood of L in K with $\overline{W} \subset \bigcup_{z \in L} O(z)$.

Let us show that the restriction $f|\overline{W}$ is perfect. Assuming the converse we could find a sequence $(x_i)_{i \geq 1} \subset \overline{W}$ that has no cluster point in \overline{W} but $(f(x_i))_{i \geq 1}$ converges to some point a in X. Passing to a subsequence, if necessary, we can assume that $x_i \notin K_i$. For every $i \geq 1$ find a point $z_i \in L$ with $x_i \in O(z_i)$. Taking into account that $x_i \notin K_i$ and $O(z) \subset K_i$ for all $z \in K_{i-1}$, we conclude that $z_i \notin K_{i-1}$ for all $i \geq 1$. Then $d(f(x_i), f(z_i)) < \frac{1}{i}$ for $i \geq 1$ and thus the sequence $(f(z_i))$ converges to $a = \lim f(x_i)$ which is not possible since $f|L$ is perfect and the sequence (z_i) has no cluster point in L.

Applying n-PHAP it will be convenient to work with its stronger version.

Lemma 3. If a space X has n-PHAP, then for any open cover \mathcal{U} of X, any simplicial complex K with $\dim K \leq n$, any closed subspace $F \subset K$, and any map $f : K \to X$ whose restriction $f|F : F \to X$ is perfect, there is a perfect map $g : K \to X$, \mathcal{U}-homotopic to f via a \mathcal{U}-homotopy $h : K \times [0, 1] \to X$ such that $h(x, 1) = g(x)$ for all $x \in K$ and $h(x, t) = f(x)$ for all $(x, t) \in K \times \{ 0 \} \cup F \times [0, 1]$.

Proof. By Lemma 2, the restriction $f|\overline{W}$ is perfect for some closed neighborhood \overline{W} of F in K. By Lemma 1, there is a cover $\mathcal{V} \in \text{cov}(X)$, $\mathcal{V} \prec \mathcal{U}$, such that a map $g : \overline{W} \to X$ is perfect, whenever it is \mathcal{V}-near to $f|\overline{W}$. Using n-PHAP of X, find a perfect map $\hat{f} : K \to X$, \mathcal{V}-homotopic to f via a homotopy $\hat{h} : K \times [0, 1] \to X$ such that $\hat{h}(x, 0) = f(x)$ and $\hat{h}(x, 1) = \hat{f}(x)$ for all $x \in K$. Fix any continuous map $\lambda : K \to [0, 1]$ with $\lambda(F) \subset \{ 0 \}$ and $\lambda(K \setminus \overline{W}) \subset \{ 1 \}$ and consider the homotopy $h : K \times [0, 1] \to X$ defined by $h(x, t) = \hat{h}(x, \lambda(x)t)$ for $(x, t) \in K \times [0, 1]$. It is easy to see that the map $g : K \to X$, $g : x \mapsto h(x, 1)$, and the \mathcal{U}-homotopy h satisfy the requirements of the lemma.

The following lemma gives a proof of Theorem 1(1).

Lemma 4. If X is a space with n-PHAP, then each open subspace of X has n-PHAP.

Proof. Let U be an open subspace of X, U be an open cover of U and $f_0 : K \to U$ be a map of a simplicial complex K with $\dim K \leq n$. We have to construct a perfect map $f_\infty : K \to U$ which is \mathcal{U}-homotopic to f_0.

Fix any metric $\rho < 1$ generating the topology of X. For every $n \geq 0$ let $K_n = \{ x \in K : \rho(f_0(x), X \setminus U) \geq 2^{-n} \}$. It is clear that each set K_n is closed in K and lies in the interior of K_{n+1}. Since $\rho < 1$, $K_0 = \emptyset$.

Let $(U_n)_{n \geq 0}$ be a sequence of open covers of X such that $\text{mesh} U_n < 2^{-(n+1)}$ and $St U_{n+1} \prec U_n$ for any $n \geq 0$. We can additionally assume that the covers U_n are so fine that $\{ St(x, U_n) : \rho(x, X \setminus U) \geq 2^{-n} \} \prec U$ for every $n \geq 0$.

By induction, we shall construct a function sequence \(\{ f_n : K \to X \}_{n \in \omega} \) satisfying the following conditions for every \(n \in \mathbb{N} \):

1. \(f_n(x) = f_{n-1}(x) \) for any \(x \in K_{n-1} \cup (K \setminus K_{n+1}) \);
2. the map \(f_n|K_n : K_n \to X \) is perfect;
3. the map \(f_n \) is \(\mathcal{U}_{n+2} \)-homotopic to \(f_{n-1} \) via a \(\mathcal{U}_{n+2} \)-homotopy \(h_n : K \times [0, 1] \to X \) such that \(h_n(x, t) = f_n(x) \) for \((x, t) \in K \times \{1\} \) and \(h_n(x, t) = f_{n-1}(x) \) for all \((x, t) \in K \times \{0\} \cup (K_{n-1} \cup (K \setminus K_{n+1})) \times [0, 1] \).

Assume that for some \(n \in \mathbb{N} \) the function \(f_{n-1} \) has been constructed. Using Lemma 3 find a perfect map \(g : K \to X \) and a \(\mathcal{U}_{n+2} \)-homotopy \(h : K \times [0, 1] \to X \) such that \(h(x, 1) = g(x) \) for any \(x \in K \) and \(h(x, t) = f_{n-1}(x) \) for any \((x, t) \in K \times \{0\} \cup K_{n-1} \times [0, 1] \).

Let \(\lambda : K \to [0, 1] \) be a continuous function such that \(\lambda^{-1}(0) \supset K \setminus K_{n+1} \) and \(\lambda^{-1}(1) \supset K_n \).

Finally, consider the function \(f_n : K \to X \) defined by \(f_n(x) = h(x, \lambda(x)) \) for \(x \in K \) and the homotopy \(h_n : K \times [0, 1] \to X \) defined by \(h_n(x, t) = h(x, \lambda(x) \cdot t) \) for \((x, t) \in K \times [0, 1] \). The construction of \(f_n \) and \(h_n \) imply that the conditions (1)–(3) are satisfied. The conditions (1) imply that for each \(x \in K \) the sequence \(\{f_n(x)\} \) eventually stabilizes and thus the limit map \(f_\infty = \lim_{n \to \infty} f_n : K \to X \) is well-defined. Observe that \(f_\infty \) is homotopic to the map \(f_0 \) via the homotopy \(h_\infty : K \times [0, \infty) \to X \) defined by \(h_\infty(x, \infty) = f_\infty(x) \) for \(x \in K \) and \(h_\infty(x, t) = h_n(x, t - n + 1) \) for \(x \in K \) and \(t \in [n - 1, n] \), \(n \geq 1 \).

Since \(\rho(f_0(X), X \setminus U) \geq 2^{-n} \), for \(x \in K \setminus K_{n-1} \), we get

\[
\tag{1} h_\infty(\{x\} \times [0, \infty)) = \bigcup_{i=-1}^{1} h_{n+i}(\{x\} \times [0, 1]) \subset St(f_0(x), U_n) \subset St(f_0(x), U).
\]

This means that \(h_\infty \) is a \(\mathcal{U} \)-homotopy, which yields \(h_\infty(K \times [0, \infty)) \subset U \) and \(f_\infty(K) \subset U \).

Also (1) implies that \(\rho(f_\infty(x), f_0(x)) \leq \text{mesh} U_n < 2^{-(n+1)} \) for any \(x \in K \setminus K_{n-1} \).

Let us show finally that the map \(f_\infty : K \to U \) is perfect. Take any compact subset \(C \subset U \) and find \(n \geq 0 \) such that \(\rho(C, X \setminus U) > 2^{-n} \). We claim that \(f_\infty^{-1}(C) \subset K_{n+1} \). Fix any \(x \in K \setminus K_{n+1} \) and find a unique number \(m \) such that \(x \in K_m \setminus K_{m-1} \). It follows that \(m \geq n + 2 \) and \(\rho(f_\infty(x), f_0(x)) < 2^{-(m+1)} \leq 2^{-(n+3)} \). By the definition of the set \(K_{m-1} \), we get \(\rho(f_0(x), X \setminus U) < 2^{-(m-1)} \leq 2^{-(n+1)} \) and thus

\[
\rho(f_0(x), C) \geq \rho(C, X \setminus U) - \rho(f_0(x), X \setminus U) > 2^{-n} - 2^{-(n+1)} = 2^{-(n+1)}.
\]

Then \(\rho(f_\infty(x), C) \geq \rho(f_0(x), C) - \rho(f_\infty(x), f_0(x)) > 2^{-(n+1)} - 2^{-(n+3)} > 0 \) and thus \(f_\infty(x) \not\in C \). Therefore \(f_\infty^{-1}(C) \subset K_{n+1} \). Since the map \(f_\infty|K_{n+1} = f_{n+2}|K_{n+1} \) is perfect we conclude that the preimage \(f_\infty^{-1}(C) = (f_\infty|K_{n+1})^{-1}(C) \) is compact. This means that the map \(f_\infty : K \to U \) is perfect. \(\square \)

Lemma 5. A space \(X \) has \(n \)-PHAP provided \(X \) is a union of two open subspaces with \(n \)-PHAP.

Proof. Suppose \(X = U_0 \cup U_1 \) where \(U_0, U_1 \) are open subspaces of \(X \) having \(n \)-PHAP. Find two open subsets \(V_0, V_1 \subset X \) such that \(V_0 \cup V_1 = X \) and \(\overline{V}_i \subset U_i \) for \(i = 0, 1 \).

To show that \(X \) has \(n \)-PHAP, fix an open cover \(\mathcal{U} \) of \(X \) and a map \(f : K \to X \) of a simplicial complex \(K \) with \(\dim K \leq n \). Pick an open cover \(\mathcal{V} \) of \(X \) such that \(St \mathcal{V} \prec \mathcal{U} \) and \(cl_X(St(\overline{V}_i \cup St(V_i))) \subset U_i \) for \(i = 0, 1 \).

Let \(W_i = f^{-1}(V_i) \) and \(W'_i = f^{-1}(U_i) \) for \(i = 0, 1 \). Taking a sufficiently fine triangulation of \(K \), we can assume that each simplex of \(K \) lies in \(W_0 \) or \(W_1 \). Then the union \(K_i \) of simplexes lying in \(W_i \) is a subcomplex of \(K \) and \(K_0 \cup K_1 = K \).

Since the space \(W_0 \subset K \) is triangulable, the \(n \)-PHAP of \(U_0 \) allows us to find a proper map \(f_0 : W_0 \to U_0 \) which is \(\mathcal{V} \)-homotopic to \(f|W_0' \) via a \(\mathcal{V} \)-homotopy \(h_0 : W_0 \times [0, 1] \to X \).
U_0 such that $h_0(x,0) = f(x)$ and $h_0(x,1) = f_0(x)$ for $x \in W'_0$. Note that $f_0(K_0) \subset \text{St}(f(K),\mathcal{V}) \subset \text{St}(\overline{V}_0,\mathcal{V}) \subset \text{cl}_X(\text{St}(\overline{V}_0,\mathcal{V})) \subset U_0$ which implies that the map $f_0|K_0 : K_0 \rightarrow X$ is perfect.

Let $\lambda : K \rightarrow [0,1]$ be a continuous map such that $\lambda^{-1}(1) \supset K_0$ and $\lambda^{-1}(0) \supset K \setminus W_0$. Since $\overline{W_0} \subset W'_0$, we can define a homotopy $\tilde{h}_0 : K \times [0,1] \rightarrow X$ letting $\tilde{h}_0(x,t) = h_0(x,\lambda(x) \cdot t)$ for $(x,t) \in W'_0 \times [0,1]$ and $\tilde{h}_0(x,1) = f(x)$ for $x \notin W_0$ and $t \in [0,1]$. Let $\tilde{f}_0(x) = \tilde{h}_0(x,1)$. Since $f_0|K_0 = f_0|K_0$ the map $\tilde{f}_0|K_0 : K_0 \rightarrow X$ is perfect.

Observe that $\tilde{f}_0(K_1) \subset \text{St}(f(K_1),\mathcal{V}) \subset \text{St}(\overline{V}_1,\mathcal{V}) \subset U_1$ and applying Lemma 3, find a perfect map $f_1 : K_1 \rightarrow U_1$ which is \mathcal{V}-homotopic to the restriction $\tilde{f}_0|K_1$ via a \mathcal{V}-homotopy $h_1 : K_1 \times [0,1] \rightarrow U_1$ such that $h_1(x,1) = f_1(x)$ and $h_1(x,t) = f_0(x)$ for $(x,t) \in K_1 \times \{0\} \cup (K_0 \cap K_1) \times [0,1]$. Then $f_1(K_1) \subset \text{St}(\tilde{f}_0(K_1),\mathcal{V}) \subset \text{St}(\text{St}(f(K_1),\mathcal{V}),\mathcal{V}) \subset \text{cl}_X\text{St}(\overline{V}_1,\text{St}\mathcal{V}) \subset U_1$ and hence the map $f_1|K_1 : K_1 \rightarrow X$ is perfect.

Finally, consider the map $g : K \rightarrow X$ defined by $g|K_0 = \tilde{f}_0|K_0$ and $g|K_1 = f_1$. The map g is perfect because so are its restrictions onto the closed sets K_0 and K_1. It is easy to show that g is \mathcal{V}-homotopic to \tilde{f}_0 and hence is $\text{St}\mathcal{V}$-homotopic to f. \hfill \square

Now we can prove the second item of Theorem 1. We shall exploit the classical Michael result [Mi] on local properties. Following E. Michael we call a property \mathcal{P} of topological spaces to be local if a space X has \mathcal{P} if and only if each point of X has an open neighborhood with the property \mathcal{P}. According to [Mi] (see also Proposition 4.1 of [BP, Ch.II]) a property \mathcal{P} is local if and only if \mathcal{P} is open-hereditary (open subspaces of a space with the property \mathcal{P} have that property), open-additive (a space has the property \mathcal{P} if it is a union of two open subspaces with that property), and discrete additive (a space has \mathcal{P} provided it is the union of a discrete family of open subspaces with the property \mathcal{P}).

Lemmas 4 and 5 imply that the n-PHAP is an open-hereditary and open-additive property. It is trivial to check that the discrete union of spaces with n-PHAP has n-PHAP. Applying the Michael Theorem, we conclude that n-PHAP is a local property. In other words the following lemma implying Theorem 1(2) is true.

Lemma 6. A space X has n-PHAP provided X admits an open cover by subspaces with n-PHAP.

The third statement of Theorem 1 follows from

Lemma 7. If a space X has n-PHAP, then X has the discrete n-cells property.

Proof. This lemma trivially follows from a result of [Cu] asserting that a space X has the discrete n-cells property if and only if each map $f : I^n \times \omega \rightarrow X$ can be approximated by a map g sending $\{I^n \times \{i\}\}_{i \in \omega}$ onto a locally finite collection in X. \hfill \square

To reverse the preceding lemma we will need one classical result concerning LC^n-spaces.

Lemma 8. ([Hu, V.5.1]) For any cover $U \in \text{cov}(X)$ of an LC^n-space X there is a cover $\mathcal{V} \in \text{cov}(X)$ such that any two \mathcal{V}-near maps $f, g : K \rightarrow X$ from a space K with $\dim K \leq n$ are U-homotopic.

Now we are able to prove the item 4 of Theorem 1.

Lemma 9. An LC^n-space has n-PHAP if and only if it has the discrete n-cells property.

Proof. The “only if” part follows from Lemma 7. The “if” part will be proven by induction. Fix any finite $n \geq 0$ and assume that Lemma 9 has been proved for all $k < n$. To show that an LC^n-space X with the discrete n-cells properties has n-PHAP, fix a cover $U \in \text{cov}(X)$ and a map $f : K \rightarrow X$ from an n-dimensional simplicial complex K.

Let \(\mathcal{U}_1 \in \text{cov}(X) \) be an open cover with \(\text{St}\mathcal{U}_1 < \mathcal{U} \). Let \(K^{(n-1)} \) denote the \((n-1)\)-dimensional skeleton of \(K \). By the inductive hypothesis, the space \(X \) has \((n-1)\)-PHAP which allows us to find a perfect map \(g : K^{(n-1)} \to X \) which is \(\mathcal{U}_1 \)-homotopic to \(f|K^{(n-1)} \). Since the pair \((K, K^{(n-1)})\) has the homotopy extension property, the map \(g \) admits a continuous extension \(\bar{g} : K \to X, \mathcal{U}_1 \)-homotopic to \(f \).

By Lemma 2, the restriction \(\bar{g}|\overline{W} \) is perfect for some closed neighborhood \(\overline{W} \) of \(K^{(n-1)} \) in \(K \). By Lemma 1, there is a cover \(\mathcal{U}_2 \in \text{cov}(X) \) such that \(\mathcal{U}_2 < \mathcal{U}_1 \) and any map \(p : \overline{W} \to X, \mathcal{U}_2\)-near to \(\bar{g}|\overline{W} \) is perfect. By Lemma 8 there is a cover \(\mathcal{U}_3 \in \text{cov}(X) \) such that any two \(\mathcal{U}_3\)-near maps from a space \(D \) with \(\dim D \leq n \) into \(X \) are \(\mathcal{U}_2\)-homotopic.

Write the complement \(K \setminus K^{(n-1)} = \bigcup_{i \in I} \sigma_i \) as the disjoint union of open \(n \)-dimensional simplexes of \(K \) and consider the discrete topological sum \(D = \bigcup_{i \in I} \partial\sigma_i \) of their closures in \(K \). Denote by \(i : K \setminus K^{(n-1)} \to D \) the natural embedding. There is a natural surjective perfect map \(\pi : D \to K \) such that \(\pi(\bigcup_{i \in I} \partial\sigma_i) = K^{(n-1)} \).

Since \(X \) has the discrete \(n \)-cells property, there is a perfect map \(q : D \to X \) such that \((g, \bar{g} \circ \pi) < \mathcal{U}_3 \). By the choice of the cover \(\mathcal{U}_3 \), there is a \(\mathcal{U}_2\)-homotopy \(h : D \times [0, 1] \to X \) connecting the maps \(\bar{g} \circ \pi \) and \(q \) in the sense that \(h(x, 0) = \bar{g} \circ \pi(x) \) and \(h(x, 1) = q(x) \) for \(x \in D \). Let \(\lambda : K \to [0, 1] \) be a continuous map such that \(\lambda^{-1}(0) \) is a neighborhood of \(K^{(n-1)} \) and \(\lambda \) is \(K \)-\(W \subset \lambda^{-1}(1) \). Finally, consider the map \(p : K \to X \) defined by

\[
p(x) = \begin{cases} g(x) & \text{if } x \in K^{(n-1)}, \\ h(i(x), \lambda(x)) & \text{otherwise.} \end{cases}
\]

It is easy to see that the map \(p \) is continuous and \(\mathcal{U}_2\)-homotopic to \(\bar{g} \). Taking into account that \(\mathcal{U}_2 < \mathcal{U}_1, \text{St}\mathcal{U}_1 < \mathcal{U} \), and \(\bar{g} \) is \(\mathcal{U}_1\)-homotopic to \(f \), we conclude that the map \(p \) is \(\mathcal{U}\)-homotopic to \(f \).

Finally, let us show that the map \(p \) is perfect. For this observe that the restriction \(p|\overline{W} \), being \(\mathcal{U}_2\)-homotopic to \(\bar{g} \), is perfect while the restriction \(p|K \setminus W \), being equal to \(q \circ i|K \setminus W \), is perfect too. \(\square \)

For the proof of Theorem 1(5) we shall need

Lemma 10. Let \(K \) be a simplicial complex and \(\emptyset = L_0 \subset L_1 \subset \cdots \) be a tower of subcomplexes of \(K \) such that \(K = \bigcup_{i \in \omega} L_i \) and each \(L_i \) lies in the interior of \(L_{i+1} \). Then for any map \(f : K \to X \) into a metric space \((X, d)\) with \(n \)-PHAP and any sequence \((\varepsilon_i)_{i \in \omega} \) in \((0, 1] \) there exists a map \(\tilde{f} : K \to X \) and a homotopy \(H : K \times [0, 1] \to X \) satisfying the following conditions:

(a) \(H(z, 0) = f(z), H(z, 1) = \tilde{f}(z) \) for all \(z \in K \);

(b) \(\text{diam } H(\{z\} \times [0, 1]) < \varepsilon_k \) for all \(z \in L_k \setminus L_{k-1} \) and \(k \in \omega \);

(c) \(\tilde{f}|L_k^{(n)} \) is perfect for every \(k \in \omega \).

Proof. Without loss of generality, \(\varepsilon_{k+1} < \varepsilon_k/2 \) for all \(k \in \omega \). Put \(f_0 = f \). By induction, for every \(k \in \mathbb{N} \) we shall construct a map \(f_k : K \to X \) and a homotopy \(H_k : K \times [0, 1] \to X \) satisfying the following conditions:

\((1_k) \) \(H_k(z, 0) = f_{k-1}(z) \) and \(H_k(z, 1) = f_k(z) \) for all \(z \in K \);

\((2_k) \) \(H_k(z, t) = f_{k-1}(z) \) for all \(z \in L_{k-1} \cup K \setminus L_{k+1} \) and \(t \in [0, 1] \);

\((3_k) \) \(\text{diam } H_k(\{z\} \times [0, 1]) < \varepsilon_{k+1} \) for all \(z \in K \);

\((4_k) \) \(f_k|L_k^{(n)} \) is perfect.

Suppose that functions \(f_i \) and homotopies \(H_i \) have been constructed for \(i \leq k \). Take any open cover \(\mathcal{U} \) of \(X \) with mesh \(\mathcal{U} < \varepsilon_{k+2} \). Using Lemma 3, find a perfect map \(g : K^{(n)} \to X \), \(\mathcal{U}\)-homotopic to \(f_k \) via a homotopy \(h : K^{(n)} \times [0, 1] \to X \) such that \(h(z, 1) = g(z) \)
for \(z \in K(n) \) and \(h(z, t) = f_k(z) \) for \((z, t) \in K(n) \times \{0\} \cup L_k(n) \times [0, 1] \). Then \(M = L_k(n) \cup L_{k+1}(n) \cup K \setminus L_{k+2} \) is a simplicial subcomplex of \(K \) and the homotopy extension property of the simplicial pair \((K, M)\) allows us to find a \(\mathcal{U}\)-homotopy \(H_{k+1} : K \times [0, 1] \rightarrow X \) such that \(H_{k+1}(z, t) = f_k(z) \) if \((z, t) \in K \times \{0\} \cup (L_k(n) \cup K \setminus L_{k+2}) \times [0, 1] \) and \(H_{k+1}(z, t) = h(z, t) \) if \((z, t) \in L_k(n) \times [0, 1] \). Letting \(f_{k+1}(z) = H_{k+1}(z, 1) \) for \(z \in K \) we finish the inductive step.

The conditions (1\(_k\))–(3\(_k\)) imply that the limit map \(\tilde{f} = \lim_{k \to \infty} f_k \) is well-defined and continuous. Using the homotopies \(H_k \) it is easy to compose a homotopy \(H \) connecting the maps \(f \) and \(\tilde{f} \) and satisfying the conditions (a)–(c) of the lemma. \(\square \)

With Lemma 10 in disposition we can prove the fifth item of Theorem 1. It should be mentioned that a particular case of Lemma 11 was proven by P. Bowers in [Bo2, 4.6].

Lemma 11. If \(X_1 \) is a space with \(n_1\)-PHAP and \(X_2 \) is a space with \(n_2\)-PHAP, then the product \(X_1 \times X_2 \) has \((n_1 + n_2 + 1)\)-PHAP.

Proof. Let \(n = n_1 + n_2 + 1 \), \(K \) be a simplicial complex with \(\dim K \leq n \), \(\mathcal{U} \in \operatorname{cov}(X_1 \times X_2) \), and \(f = (f_1, f_2) : K \rightarrow X_1 \times X_2 \) be a map. For every \(i \in \{1, 2\} \) fix an admissible metric \(d_i \leq 1 \) on \(X_i \). On the product \(X_1 \times X_2 \) consider the metric \(d((x_1, x_2), (x_1', x_2')) = \max\{d_1(x_1, x_1'), d_2(x_2, x_2')\} \). Find a continuous map \(\varepsilon : X_1 \times X_2 \rightarrow (0, 1] \) such that \(\{B(x, 6\varepsilon(x)) : x \in X_1 \times X_2\} \subset \mathcal{U} \). Replacing \(K \) by its sufficiently fine subdivision, we can assume that for any simplex \(\sigma \) of \(K \) we have

1. \(\min\{\varepsilon \circ f(z) : z \in \sigma\} > \frac{1}{4} \max\{\varepsilon \circ f(z) : z \in \sigma\} \)
2. \(\operatorname{diam} f(\sigma) < \min\{\varepsilon \circ f(z) : z \in \sigma\} \)

For every \(k \in \omega \) let \(F_k = (\varepsilon \circ f)^{-1}([2^{-k}, 1]) \). It follows from (1) that any simplex of \(K \) meeting \(F_k \) lies in the interior of \(F_{k+1} \). Consequently, the simplicial subcomplex \(L_k \) of \(K \), composed by simplices meeting \(F_k \) lies in the interior of the subcomplex \(L_{k+1} \). Evidently, the subcomplexes \(L_k \), \(k \in \omega \), cover the complex \(K \).

Denote by \(K_1 \) the \(n_1\)-dimensional skeleton of \(K \) and let \(K_2 \) be the full subcomplex of the barycentric subdivision of \(K \), generated by the barycenters of simplexes of dimension \(> n_1 \). Then \(K_2 \) is a subcomplex of dimension \(\dim K - (n_1 + 1) \leq n_2 \) of the barycentric subdivision of \(K \). Applying Lemma 10 with \(\varepsilon_k = 2^{-(k+1)} \), for every \(i \in \{1, 2\} \) we can find a map \(\tilde{f}_i : K \rightarrow X_i \) and a homotopy \(H^1_k : K \times [0, 1] \rightarrow X_i \) such that the following conditions hold

3. \(H^1_k(z, 0) = f_i(z) \) and \(H^1_k(z, 1) = \tilde{f}_i(z) \) for \(z \in K \);
4. \(\operatorname{diam} H_i((z) \times [0, 1]) < \varepsilon \circ f(z) \) for \(z \in K \);
5. \(f_i|K_i \cap L_k \) is perfect for all \(k \in \omega \).

Observe that for points \(z, z' \) of a simplex \(\sigma \) of \(K \), the conditions (1), (2) and (4) imply

\[
\begin{align*}
d_i(\tilde{f}_i(z), \tilde{f}_i(z')) &\leq d_i(\tilde{f}_i(z), f_i(z)) + \operatorname{diam} f_i(\sigma) + d_i(f_i(z'), \tilde{f}_i(z')) \\
&< \varepsilon \circ f(z) + \operatorname{diam} f_i(\sigma) + \varepsilon \circ f(z') < 5 \min \varepsilon \circ f_i(\sigma),
\end{align*}
\]

which yields \(\operatorname{diam} \tilde{f}_i(\sigma) < 5 \min \varepsilon \circ f_i(\sigma) \).

Each point \(z \in K \) can be written as \(z = sz_1 + (1-s)z_2 \) with \(z_1 \in K_i \) and \(s \in [0, 1] \) and such a representation is unique if \(z \notin K_1 \cup K_2 \). The set \(C_1 \) (resp. \(C_2 \)) of points \(z \) for which \(s \geq \frac{1}{2} \) (resp. \(s \leq \frac{1}{2} \)) is closed in \(K \) and \(K = C_1 \cup C_2 \). For every \(i \in \{1, 2\} \) there is a homotopy \(\Phi_i : K \times [0, 1] \rightarrow K \) such that \(\Phi_i(z, 0) = z \), \(\Phi_i(C_i \times \{1\}) \subset K_i \) and \(\Phi_i(\sigma \times [0, 1]) \subset \sigma \) for each simplex \(\sigma \) of \(K \) (such a homotopy \(\Phi_i \) can be defined by \(\Phi_i(z, t) = \alpha_i(s, t)z_1 + (1-\alpha_i(s, t))z_2 \) for \(z = sz_1 + (1-s)z_2 \), where \(\alpha_1(s, t) = \min\{1, (1+t)s\} \) and \(\alpha_2(s, t) = \max\{0, (s+t)(s-1)\} \)).
For $i \in \{1, 2\}$, define a homotopy $H^2_i : K \times [0,1] \to X_i$ by $H^2_i(z, t) = \bar{f}_i \circ \Phi_i(z, t)$ and let $g_i(z) = H^2_i(z, 1)$. Let $z \in K$ and σ be a simplex of K, containing the point z. Since $\Phi_i(\sigma \times [0,1]) \subset \sigma$ we get $\text{diam } H^2_i(\{z\} \times [0,1]) \leq \text{diam } \bar{f}_i(\sigma) < 5 \varepsilon \circ f(z)$. Since $H^2_i(z, 1) = \bar{f}_i(z) = H^2_i(z, 0)$, we can glue H^2_i and H^2_i together and define a homotopy H_i linking f_i and g_i and such that $\text{diam } H_i(\{z\} \times [0,1]) < 6 \varepsilon \circ f(z)$ for all $z \in K$. Then $H = (H_1, H_2)$ is a homotopy between f and $g = (g_1, g_2)$ such that $\text{diam } h_i(\{z\} \times [0,1]) < 6 \varepsilon \circ f(z)$ for all $z \in K$. The choice of ε guarantees that H is a U-homotopy.

Let us show that the map g is perfect. Assuming the converse we would find a sequence $\{z_r\}$ without limit points in K and such that the sequence $\{g(z_r)\}$ converges to some point $x = (x_1, x_2) \in X$. Since $C_1 \cup C_2 = K$, we can suppose that $\{z_r\} \subset C_i$ for some $i \in \{1, 2\}$. The inclusion $\Phi_i(\sigma \times [0,1]) \subset \sigma$ for any simplex σ of K implies that the homotopy Φ_i is proper and $\Phi_i(L_k \times [0,1]) \subset L_k$ for all k. In particular, $\Phi_i((C_i \cap L_k) \times \{1\}) \subset K_i \cap L_k$ and since the restriction $\bar{f}_i|K_i \cap L_k$ is proper, we get that the restriction of g_i onto the closed subset $C_i \cap L_k$ is proper. Then $C_i \cap L_k$ contains only finitely many points z_r which yields $\varepsilon \circ f(z_r) < 2^{-k}$ for all sufficiently large r and thus $\lim_{r \to \infty} \varepsilon \circ f(z_r) = 0$. Since $d(f(z_r), g(z_r)) < 6 \varepsilon \circ f(z_r)$, we get that the sequence $\{f(z_r)\}$ converges to x and thus $\varepsilon(x) = \lim_{r \to \infty} \varepsilon \circ f(z_r) = 0$, which is impossible.

Let X be a topological space and $U \in \text{cov}(X)$. We define a subset $B \subset X$ to be U-bounded, if $B \subset \bigcup \mathcal{F}$ for some finite subcollection \mathcal{F} of U.

Lemma 12. Let X be a space with n-PHAP and $U \in \text{cov}(X)$. Then for any simplicially approximable map $f : P \to X$ from a space P with $\dim P \leq n$ and any open cover V of P there exists an open cover W of X and a map $g : P \to X$, U-homotopic to f and such that $g^{-1}(A)$ is V-bounded in P for any W-bounded subset $A \subset X$.

Proof. Given a cover $U \in \text{cov}(X)$ let $U' \in \text{cov}(X)$ be any cover with $\text{St}^2 U' \subsetneq U$. Since f is simplicially approximable, there are a simplicial complex K_0 and two maps $p_0 : P \to K_0$ and $q_0 : K_0 \to X$ such that the map $q_0 \circ p_0$ is U'-homotopic to f. Replacing the triangulation of K_0 by a sufficiently fine subdivision, if necessary, we can assume that $\text{St}(K_0) \subsetneq q_0^{-1}(U')$.

Let $V_1 \subsetneq V$ be an open star-finite cover of P, K_1 be the nerve of V_1 and $p_1 : P \to K_1$ be a canonical map such that $p_1^{-1}(\text{St}(K_1)) \subsetneq V$. Let $K = K_0 \times K_1$, $p = (p_0, p_1) : P \to K$ and $\alpha = q_0 \circ \text{pr}_{K_0} : K \to X$. Endow K with a triangulation such that the projections of K onto K_0 and K_1 are simplicial maps. Then $\text{St}(K) \subsetneq (\text{pr}_{K_0})^{-1}(\text{St}(K_0)) \subsetneq \alpha^{-1}(U')$ while $p^{-1}(\text{St}(K)) \subset p_1^{-1}(\text{St}(K_1)) \subsetneq V$.

Since $\dim P \leq n$, there is a continuous function $\xi : P \to K^{(n)}$ such that for any $x \in P$ the point $\xi(x)$ belongs to the minimal simplex containing $p(x)$. Then ξ is $\text{St}(K)$-homotopic to p and hence $\alpha \circ \xi$ is U'-homotopic to $\alpha \circ p = q_0 \circ p_0$. On the other hand, for every vertex v of K, $\xi^{-1}(\text{St}(v, K)) \subset p^{-1}(\text{St}(v, K))$ and thus $\xi^{-1}(\text{St}(K))$ refines V.

Using the n-PHAP of X, we can find a perfect map $\pi : K^{(n)} \to X$, U'-homotopic to $\alpha|K^{(n)}$. Then $g = \pi \circ \xi$ is U'-homotopic to $\alpha \circ \xi$ and consequently, $\text{St}^2(U')$-homotopic to f.

\begin{center}
\begin{tikzpicture}
\node (X) at (0,0) {X};
\node (K) at (-1,1) {K};
\node (K0) at (-1,2) {K_0};
\node (P) at (-3,0) {P};
\node (K(n)) at (-1,3) {$K^{(n)}$};
\draw[->] (X) -- (K) node[pos=0.5, above] {f};
\draw[->] (K) -- (K0) node[pos=0.5, above] {π};
\draw[->] (K) -- (K(n)) node[pos=0.5, above] {g_0};
\draw[->] (P) -- (K) node[pos=0.5, left] {p};
\draw[->] (P) -- (K0) node[pos=0.5, left] {p_0};
\end{tikzpicture}
\end{center}
Since \(\pi \) is perfect and \(St(K) \) is locally finite, each point \(x \in X \) has an open neighborhood \(O(x) \) such that \(\pi^{-1}(O(x)) \) is \(St(K) \)-bounded. Then \(g^{-1}(O(x)) \) is \(\xi^{-1}(St(K)) \)-bounded and hence \(\mathcal{V} \)-bounded. Consequently, the cover \(\mathcal{W} = \{ O(x) : x \in X \} \) has the desired properties.

Next, we prove the sixth item of Theorem 1.

Lemma 13. For any simplicially approximable map \(f : P \rightarrow X \) from a Polish space \(P \) with \(\dim P \leq n \) into a Polish space \(X \) with \(n \)-PHAP and any open cover \(U \in \text{cov}(X) \) there is a perfect map \(g : P \rightarrow X, U \)-homotopic to \(f \).

Proof. We assume that the Polish spaces \(P \) and \(X \) are endowed with some complete metrics generating their topology.

Let \(f_{-1} = f \) and \(U_{-1} = U \). Using Lemma 12 we can construct by induction two sequences of star-finite open covers \((V_n)_{n \in \omega} \subseteq \text{cov}(P) \) and \((U_n)_{n \in \omega} \subseteq \text{cov}(X) \) and a sequence \((f_n)_{n \in \omega} \) of continuous maps from \(P \) into \(X \) satisfying the following conditions:

(a) \(\lim_{n \to \infty} \text{mesh}(V_n) = 0 \);
(b) \(\text{mesh}(U_n) \leq \frac{1}{2^n} \) for every \(n \in \omega \);
(c) \(St(U_{n+1}) \subset U_n \) for every \(n \in \omega \);
(d) \(f_{n-1}^{-1}(B) \) is \(V_n \)-bounded in \(P \) for any \(U_n \)-bounded subset \(B \subset X \);
(e) \(f_n \) and \(f_{n-1} \) are \(U_{n-1} \)-homotopic for all \(n \in \omega \).

It follows from (b), (c) and (e) that the limit map \(g = \lim_{n \to \infty} f_n : P \to X \) is a well-defined continuous function, \(St(U_n) \)-homotopic to each \(f_n \).

We claim that the map \(g \) is proper. Indeed, let \(C \) be a compact subset of \(X \). We have to show that \(g^{-1}(C) \) is compact. Since \(g^{-1}(C) \) is closed in the complete metric space \(P \), we may prove the total boundedness of \(g^{-1}(C) \). Due to (a) it suffices to verify that for every \(n \in \omega \) the set \(g^{-1}(C) \) is \(V_n \)-bounded. Since \((g, f_n) \prec St(U_n) \), we get \(g^{-1}(C) \subset f_n^{-1}(St(C, St(U_n))) \). Taking into account that the cover \(U_n \) is star-finite and the set \(C \) is compact, we conclude that the set \(St(C, St(U_n)) \) is \(U_n \)-bounded. Then (d) implies that \(f_n^{-1}(St(C, St(U_n))) \supset g^{-1}(C) \) is \(V_n \)-bounded.

For the proof of the two last items of Theorem 1 we need to recall some definitions from [BRZ]. Given two spaces \(X, Y \) denote by \(C(X, Y) \) the space of all continuous functions from \(X \) to \(Y \), endowed with the limitation topology whose neighborhood base at an \(f \in C(X, Y) \) consists of the sets \(B(f, \mathcal{U}) = \{ g \in C(X, Y) : (g, f) \prec \mathcal{U} \} \), where \(\mathcal{U} \) runs over all open covers of \(Y \), see [Bo3]. If the space \(Y \) is Polish, then the space \(C(X, Y) \) is Baire, see [To] or [BRZ, 3.2.1].

By a multivalued map \(F : X \Rightarrow Y \) we understand a function assigning to each point \(z \in Z \) a (possibly empty) subset \(F(z) \subseteq Y \). Such a multivalued map \(F : X \Rightarrow Y \) is called perfect if for any compact subsets \(A \subseteq Z \), \(B \subseteq Y \) the sets \(F(A) = \bigcup_{z \in A} F(z) \) and \(F^{-1}(B) = \{ z \in Z : F(z) \cap B \neq \emptyset \} \) are compact.

Following [BRZ, p.124] we define a map \(f : X \to Y \) to be \(F \)-injective if \(|f^{-1}(F(z))| \leq 1 \) for all \(z \in Z \). A map \(f : X \to Y \) is called a \((\mathcal{U}, F) \)-map, where \(\mathcal{U} \) is an open cover of \(X \), if there is an open cover \(\mathcal{V} \) of \(Y \) such that \(\{ f^{-1}(St(F(z), \mathcal{V})) \}_{z \in Z} \prec \mathcal{U} \).

Lemma 14. Let \(U \subset \mathbb{R}^\omega \) be an open subspace of the countable product of lines and \(F : Z \Rightarrow U \) be a perfect multivalued map. For any Polish space \(P \) the set of all perfect \(F \)-injective maps is dense in the function space \(C(P, U) \).

Proof. Fix a complete metric on the Polish space \(P \) and let \((U_n)_{n \in \omega} \) be a sequence of open covers of \(P \) with \(\text{mesh} U_n < 2^{-n} \) for all \(n \in \omega \).
By [To] the set \mathcal{E} of closed embeddings is dense $G_δ$ in $C(P, U)$. By Lemma 3.2.14 of [BRZ] for every $n ∈ ω$ the set \mathcal{H}_n of (U_n, F)-maps is open and dense in $C(P, U)$. Since the function space $C(P, U)$ is Baire (see [To, 1.1]), the intersection $\mathcal{I} = \mathcal{E} \cap \bigcap_{n ∈ ω} \mathcal{H}_n$ is dense in $C(P, U)$. It is clear that each function $f ∈ \mathcal{I}$ is perfect and F-injective.

Our final lemma proves the item (7) of Theorem 1 and (8) follows from (7) applied to a constant map.

Lemma 15. If a Polish space X has n-PHAP, then for any open cover U of X and any simplicially approximable map $f : P → X$ from a Polish space P with $\dim P ≤ n$ there is a closed embedding $g : P → X$, U-near to f.

Proof. Let $V ∈ \text{cov}(X)$ be any cover with $\text{St}(V) \prec U$. The map $f : P → X$, being simplicially approximable, is V-homotopic to the composition $p ∘ q$ of maps $q : P → K$, $p : K → X$, where K is a simplicial complex. Identify the Polish space P with a closed subset of $s = (−1, 1)^ω$, the pseudo-interior of the Hilbert cube $Q = [−1, 1]^{ω}$. Since K is an ANR, the map q admits a continuous extension $\bar{q} : U → K$ onto some open neighborhood U of P in s.

According to a result of Dranishnikov [Dr] (see also [BRZ, 2.3.5]), there is an map $µ : N → Q$ from an n-dimensional compactum N onto Q, which is n-invertible in the sense that for any map $α : A → Q$ from a space A with $\dim A ≤ n$ there is a map $β : A → N$ such that $α = µ ∘ β$. It follows that $µ^{-1}(U)$ is a Polish space with $\dim µ^{-1}(U) ≤ \dim N ≤ n$.

Consider the simplicially approximable map $p ∘ \bar{q} ∘ µ : µ^{-1}(U) → X$. By Lemma 13, it is V-near to a perfect map $π : µ^{-1}(U) → X$. It is easy to see that for any $t ∈ U$ we get $π(µ^{-1}(t)) ⊂ \text{St}(p ∘ \bar{q}(t), V)$. Since the map $µ|µ^{-1}(U)$ is perfect, we can find an open cover W of U such that $π(µ^{-1}(\text{St}(t, W))) ⊂ \text{St}(p ∘ \bar{q}(t), V)$ for all $t ∈ U$.

Now consider the multivalued map $F : U → U$ defined by $F(x) = µ ∘ π^{-1} ∘ π ∘ µ^{-1}(x)$ for $x ∈ U$ and observe that it is perfect (in the sense that for any compact set $C ⊂ U$ the sets $F(C)$ and $F^{-1}(C)$ are compact in U). By Lemma 14, there is a perfect F-injective map $α : P → U$ which is W-near to the inclusion $P ⊂ U$. By the choice of the map $µ$, there is a map $β : P → µ^{-1}(U)$ such that $α = µ ∘ β$. The perfectness of the maps $α$ and $π$ implies the perfectness of the maps $β$ and $g = π ∘ β : P → X$. Moreover, the F-injectivity of the map $α$ implies the injectivity of the map g. Thus g, being injective and perfect, is a closed embedding.

Observe that for each $t ∈ P$ we get

$$g(t) = π ∘ β(t) ∈ π(µ^{-1}(α(t))) ⊂ π(µ^{-1}(\text{St}(t, W))) ⊂ \text{St}(p ∘ q(t), V),$$

which means that the maps g and $p ∘ q$ are V-near. Since f and $p ∘ q$ are V-near and $\text{St} V \prec U$ we get that f and g are U-near. \□
References

Department of Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraina and Instytut Matematyki, Akademia Świętokrzyska, Kielce, Poland

E-mail address: tbanakh@franko.lviv.ua

Université Paris VI, UFR 920, Boîte courrier 172; 4, Place Jussieu, 75252 Paris Cedex 05, France

E-mail address: cauty@math.jussieu.fr

(K. Trushchak and L. Zdomskyi) Department of Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraina