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Abstract. A sequence S = {xn}n∈ω in a locally compact G-space X is called (strongly) limit-
detecting if a continuous function f : X → R has limit limx→∞ f(x) provided for any g ∈ G
(any g from a given neighborhood of the unit of G) the limit limn→∞ f(gxn) exists; S is called
κ-controlling for a cardinal κ if for any collection U of open unbounded subsets of X with
|U| = κ there is g ∈ G such that for any U ∈ U the intersection U ∩ gS is unbounded. It is
proved that under some mild conditions a set S ⊂ X is strongly limit-detecting if and only
if S is ω-controlling in X if and only if S is asymptotically dense in the sense that for any
neighborhood U of the unit in G the set US has bounded complement in X. On the other
hand, S ⊂ X is limit-detecting if and only if S is 1-controlling and splittable (which means that
for any disjoint unbounded subsets U, V ⊂ X whose union U ∪ V has bounded complement
in X there is g ∈ G such that both the intersections gS ∩ U , gS ∩ V are unbounded in X).
In its turn, a set S ⊂ X is 1-controlling if the product KS is ω-controlling for some compact
countable set K ⊂ G. These results are proved with help of some infinite game resembling the
Telgárski game characterizing K-scattered properties.

The textbook [4] of problems in Mathematical Analysis contains the following Problem
III.2.59∗: Prove that a continuous function f : [0,+∞) → R has limit limx→+∞ f(x) = 0
at infinity if and only if limn→∞ f(an) = 0 for each real a > 0. For the solution the author of
[4] refers the reader to a rather inaccessible paper [10] and another inaccessible textbook [6].
This problem is indicated as a problem of higher complexity (for students) and serves as an
example of application of Baire Theorem. In fact, it describes a particular case of the follow-
ing general result: if (xn) is an increasing unbounded sequence of positive real numbers with
limn→∞

xn+1

xn
= 1, then a continuous function f : [0,+∞) → R has the limit limx→+∞ f(x) if

and only if for each a > 0 the limit limn→∞ f(axn) exists, see [1]. In this context the following
problem arises naturally:

Problem 1. Describe the geometric and arithmetic structure of increasing real sequences (xn)∞n=1

detecting limits of continuous functions at infinity in the sense that a continuous function f :
[0,+∞) → R has the limit limx→+∞ f(x) if and only if for each a > 0 the limit limn→∞ f(axn)
exists. In the sequel such sequences (xn) will be called limit-detecting.

In this paper we shall give an answer to this problem. In fact, we shall work with a more
general version of this problem.

Let X be a locally compact topological space endowed with a continuous action · : G×X → X
of a topological group G. In this case we shall say that X is a G-space. For an element g of the
group G and a point x of X we shall write gx in place of ·(g, x) and say that gx is the image of
x under the action of the element g. By definition, the action satisfies two laws:

• the associativity: ∀g, h ∈ G ∀x ∈ X g(hx) = (gh)x and
• the neutrality: ∀x ∈ X ex = x,

where e stands for the neutral element of the group G. In the sequel by N (e) we shall denote
the neighborhood base of the group G at e. Among basic examples of G-spaces we shall keep in
mind the half-line [0,+∞) endowed with the action of the multiplicative group R+ of positive
real numbers and the Euclidean space Rn endowed with the natural action of the isometry group
Iso(Rn) or some its subgroups (e.g. the subgroup of translations of Rn).

Given a function f : X → R and a subset S ⊂ X we shall write limS3x→∞ f(x) = a if for
any neighborhood O(a) ⊂ R of a there is a compact subset K ⊂ X such that f(S \K) ⊂ O(a).
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We shall write limx→∞ f(x) in place of limX3x→∞ f(x). The principal concepts of the paper are
defined as follows.

Definition 1. A subset S of a locally compact G-space X is called
• limit-detecting if a bounded continuous function f : X → R has limit limx→∞ f(x) at

infinity, provided for each g ∈ G the limit limS3x→∞ f(gx) exists;
• strongly limit-detecting if for any neighborhood U of the unit e in G a bounded con-

tinuous function f : X → R has limit limx→∞ f(x), provided for each g ∈ U the limit
limS3x→∞ f(gx) exists;

According to [1] for an increasing sequence S = {xn}n∈ω in the half-line [0,+∞) endowed
with the action of the multiplicative group R+ the strong limit detecting property is equivalent
to limn→∞

xn+1

xn
= 1. In fact these two properties of (xn) are equivalent to the asymptotical

density as well as the ω-controlling property defined as follows.

Definition 2. A subset S of a locally compact G-space X is defined to be
• bounded if it has compact closure in X;
• cobounded if X \ S is bounded in X;
• asymptotically dense if for any neighborhood U of the unit e in G the set US is cobounded

in X;
• κ-controlling for a cardinal κ if for any collection U of open unbounded subsets of X

with |U| ≤ κ there is an element g ∈ S such that for each U ∈ U the intersection gS ∩U
is unbounded in X;

• splittable if for any disjoint open unbounded subsets U, V ⊂ X with cobounded union
U ∪V in X there is g ∈ G such that the intersections gS∩U and gS∩V are unbounded.

Under some natural restrictions on the action of G on X we shall prove that the strong
limit-detecting property of a subset S ⊂ X is equivalent to the ω-controlling property and also
to the asymptotical density of S while the limit-detecting property of S is equivalent to the
1-controlling property combined with the splittability of S and follows from the asymptotic
density of the product KS for some scattered compacts subset K ⊂ X.

To describe these restrictions let us say that an action of a topological group G on a topological
space X is

• open on a set L ⊂ X if for any neighborhood U of the unit e in G and any point x ∈ L
the set Ux is open in X;

• asymptotically open if it is open on some open cobounded subset of X;
• almost open if it is open on some open subset L ⊂ X with cobounded closure L̄ in X;
• discrete if there is an open subset L ⊂ X with cobounded closure L̄ in X such that for

each x ∈ L the stabilizer St(x) = {g ∈ G : gx = x} is a discrete subgroup of G.

A topological group G is called ω-bounded if for each neighborhood U of the unit in G there is
a countable subset F ⊂ G with G = FU = UF , see [7], [14]. As expected, by a Baire topological
group we understand a topological group whose underlying topological space is Baire, which
means that the intersection of any countable family of dense open subsets of G is dense. A
topological space is Polish if it is homeomorphic to a separable complete metric space.

For a closed discrete subset S of a locally compact σ-compact space X endowed with a
discrete almost open action of a ω-bounded locally compact group G we shall prove the following
implications:

(asymptotically dense)

(strongly limit-detecting)

(limit-detecting)
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(2-controlling)
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These implications will be proved in the subsequent two characterizing theorems. First, we
recall some information concerning the small cardinal cov(M). By definition, it is equal to the
smallest size of a cover of the real line by nowhere dense subsets. It is clear that ℵ1 ≤ cov(M) ≤ c,
where c stands for the size of continuum. Martin Axiom implies that cov(M) = c but there
are models of ZFC in which cov(M) < c. In fact, the equality cov(M) = c is equivalent to
MAcountable, the Martin Axiom for countable posets, see [3], [16].

Theorem 1. For a subset S of a locally compact space X endowed with a continuous action of
a Baire topological group G the following conditions are equivalent:

(1) S is strongly limit-detecting;
(2) for any neighborhood U ∈ N (e) the closure of US has bounded complement in X;
(3) for any open unbounded subset U ⊂ X the set {g ∈ G : gS ∩ U is unbounded in X} is

dense Gδ in G.
Moreover, if the action of G on X is asymptotically open, then (1)–(3) are equivalent to

(4) the set S is asymptotically dense in X.
If the group G is ω-bounded, then the conditions (1)–(3) are equivalent to

(5) S is ω-controlling;
If the group G is Polish, then the conditions (1)–(3) are equivalent to

(6) S is κ-controlling for any infinite cardinal κ < cov(M).

The following proposition shows that strongly limit-detecting closed discrete subsets exist in
all locally compact σ-compact spaces endowed with an asymptotically open action of a Polish
group.

Proposition 1. If X is a locally compact σ-compact G-space endowed with an asymptotically
open action of a Baire metrizable group G, then X contains a closed discrete strongly limit-
detecting subset S. If the group G is Polish, then the set S is κ-controlling for all κ < cov(M).

Proof. Write X as a countable union X =
⋃

n∈ω Xn of compact subsets such that each Xn lies

in the interior
◦
Xn+1 of Xn+1. Fix also a decreasing neighborhood base (Un)n∈ω at the identity

of G. Find a bounded open subset W ⊂ X such that the action of G on X is open on X \W .

For every n ∈ ω consider the compact subset Kn = Xn+1 \ (W ∪
◦
Xn) and its open cover

{Unx : x ∈ Kn}. By the compactness of Kn, there is a finite subset Sn ⊂ Kn such that
Kn ⊂ UnSn. Then the set S =

⋃
n∈ω Sn is closed and discrete in X. Being asymptotically dense,

S is strongly limit-detecting by Theorem 1. If the group G is Polish, then S is κ-controlling for
all cardinals κ < cov(M). �

Next, we turn to characterization of limit-detecting subsets in locally compact G-spaces.

Theorem 2. Let X be a σ-compact locally compact G-space endowed with a discrete almost
open action of a σ-compact locally compact group G. A closed countable subset S ⊂ X is
limit-detecting if and only if it is 1-controlling and splittable.

Let us remark that for an unbounded subset S of a locally compact G-space X the splittability
is automatic if X contains no unbounded disjoint open subsets U, V with cobounded union U∪V .
This happens if each bounded subset of X lies in a bounded subset with connected complement
in X (in fact, the latter property is equivalent to the connectedness of the remainder βX \X of
the Stone-Čech compactification of X). Among spaces having the latter property there are the
half-line [0,+∞) and the Euclidean spaces Rn for n > 1. For such spaces the limit-detecting
property is equivalent to the 1-controlling property.

Another extreme happens in the case of discrete G-spaces endowed with an action of a discrete
group G. The structure of strongly limit-detecting subsets in such spaces is not interesting: all
of them are cofinite. The situation with limit-detecting property is much more interesting.
Following [11] we shall say that a subset S of a G-space X is large if for some finite subset
F ⊂ G the set FS has finite complement in X.
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Proposition 2. Let X be a discrete space endowed with an action of a discrete countable group
G. A subset S ⊂ X is 1-controlling if and only if it is large in X.

In spite of the fact that this proposition follows from the subsequent more general Theorem 3,
we shall present a short (and direct) proof. The “if” part is obvious. Assuming that S ⊂ X is
not large in X, write G =

⋃
n∈ω Fn as a countable union of finite subsets Fn ⊂ Fn+1 and for

every n ∈ ω select a point xn ∈ X \ FnS distinct from x0, . . . , xn−1. Then U = {xn : n ∈ ω} is
an open unbounded subset of X having finite intersection with each shift gS, g ∈ G, of S. This
shows that S fails to be 1-controlling. �

To characterize limit-detecting sets in discrete G-spaces X, to each subset S ⊂ X assign the
graph ΓS whose vertices are elements of the group G and two vertices g, h ∈ G are linked by
an edge in ΓS if the intersection gS ∩ hS is infinite. Observe that for each large (equivalently,
1-controlling) subset S ⊂ X the graph ΓS has only finitely many connected components.

Proposition 3. Let X be a discrete space endowed with an action of a discrete countable group
G. A subset S ⊂ X is limit-detecting if and only if S is large in X and the graph ΓS is connected.

Proof. Assume that S is limit-detecting. Then S is 1-controlling and hence large according to
the previous proposition. Assuming that the graph ΓS is not connected, take any its connected
component C ⊂ G. Let χC : G → {0, 1} be the characteristic function of the set C and G =
{gn : n ∈ N} be an enumeration of G. For every n ∈ N consider the subset Sn = gnS \

⋃
1≤i<n

Si

of X. Define a function f : X → {0, 1} letting f |Sn ≡ χC(gn) for n ∈ N and f |X \GS ≡ 0. This
function f has no limit at infinity. Nonetheless for any g ∈ G the restriction f |gS has limit at
infinity (this limit equals 0 if g ∈ C and 1 otherwise). This contradiction shows that the graph
ΓS is connected.

Now assume conversely that S is large in X and the graph ΓS is connected. Fix any function f :
X → R such that for any g ∈ S the restriction f |gS has limit Ψ(g) at infinity. The connectedness
of ΓS implies that all the limits Ψ(g), g ∈ G, coincide and are equal to some number A. Now
the 1-controlling property of the large set S implies that A equals to limx→∞ f(x). �

In contrast to the above simple arguments, the proof of Theorem 2 in the general (non-
discrete) case is not trivial and relies on a game characterization of the 1-controlling property.
This characterization will be given in terms of the existence of winning strategies in some infinite
game resembling the infinite topological game G(K, X) introduced and studied by Telgársky [12],
see also [17]. The Telgársky game G(K, X) is played by two persons called Player I and Player
II on a topological space X endowed with some collection K of closed subsets. Player I starts
the game selecting a subset K1 ∈ K while Player II responds with an open neighborhood OK1

of K1 in X. Continuing in this fashion, at the n-th inning the Player I selects a subset Kn ∈ K
and Player II responds with an open neighborhood OKn of Kn in X. At the end of the game
G(K, X) the players construct a sequence (OKn)m∈N of open sets of X. If

⋃
i<n OKi = X for

some finite n, then Player I is declared the winner. Otherwise Player II wins the game.
If the class K consists of all one-point subsets of X, then the Telgársky game G(K, X) is

nothing else but the classical game “Point-Open”, well-known in topology, see [15], [13]. The
“Point-Open” game is used to characterize scattered compacta. We recall that a topological
space X is scattered if each non-empty subset of X contains an isolated point. According to
[12] a compact Hausdorff space X is scattered if and only if Player I has a winning strategy
in the “Point-Open” game G(P, X), where P = {A ⊂ X : |A| = 1}. In a similar way for
more general classes K the existence of a winning strategy of Player I in the Telgársky game
G(K, X) characterizes the K-scatteredness property of X, where X is defined to be K-scattered
if each non-empty subset A ⊂ X contains a non-empty relatively open subset U that lies in
some K ∈ K. More detail information on infinite games and strategies can be found in [9, §20],
[15], [13], or [17].

In light of this information about the Telgársky game the rules of the game GK(S) detecting
1-controlling subsets S in locally compact G-spaces will be natural. So, let S be a subset of a
locally compact G-space X and K be a class of subsets of the group G (in the sequel we will
be interested in the classes K consisting of all one-point, finite, or compact scattered subsets
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of the group G). Like the Telgársky game G(K, X), the game GK(S) is played by two persons
called Player I and Player II. Player I starts the game selecting a subset K1 ∈ K while player
II responds with an open neighborhood U1 of the unit in G. Continuing in this fashion, at the
n-th inning Player I selects a subset Kn ∈ K and Player II responds with an open neighborhood
Un ∈ N (e). At the end of the game GK(S) the players jointly construct two sequences (Kn)
and (Un). If for some finite n the set

⋃
i<n UiKiS has bounded complement in X, then Player I

is declared the winner. Otherwise Player II wins the game.
By a strategy of the player I in the game GK(S) we understand a function $I assigning to a

finite sequence (U1, . . . , Un) of neighborhoods of e in G a subset Kn+1 = $I(U1, . . . , Un) ∈ K.
Such a strategy $I is winning in the game GK(S) if for any infinite sequence (Un) ⊂ N (e) there
is m ∈ N such that the set

⋃
n<m Un$I(U1, . . . , Un−1)S has bounded complement in X.

Dually, a strategy of the player II in GK(S) is a function $II assigning to each finite sequence
(K1, . . . ,Kn) ∈ Kn a neighborhood Un = $II(K1, . . . ,Kn) ∈ N (e). Such a strategy $II is
winning in the game GK(S) if for any infinite sequence (Kn) ∈ KN the set

⋃
n<m UnKnS has

unbounded complement in X for all m.
Note that if K ⊂ C, then each winning strategy of Player I in the game GK(S) will be winning

in GC(S) while each winning strategy of Player II in the game GC(S) will be winning in GK(S).
Thus constructing a winning strategy for Player I (resp. Player II) it is desirable to shrink (resp.
enlarge) the class K. There will be two extremal choices of the collection K: the largest is the
collection of all scattered compacta in G while the smallest is the collection of all one-point
subsets of some Gδ-subset D ⊂ G with cobounded closure D̄ in G. Now we are able to give a
game characterization of 1-controlling sets.

Theorem 3. Let S be a closed countable subset of a σ-compact locally compact G-space X
endowed with a continuous discrete almost open action of a σ-compact locally compact group
G. Suppose that K is a collection of scattered compact subsets of G whose union ∪K contains a
Gδ-set D ⊂ G with cobounded closure D̄ in G. Then the following conditions are equivalent:

(1) the set S is 1-controlling;
(2) the first player has a winning strategy in the game GK(S);
(3) the second player has no winning strategy in the game GK(S).

In fact, the implication (3)⇒(1) is true in a more general situation where X is a σ-compact
locally compact space endowed with a continuous action of a Čech complete group G, see
Lemmas 2 and 3. We recall that a Tychonov space X is Čech-complete if X is a Gδ-set in
some/any compactification of X. This observation allows us to prove

Corollary 1. Let X be a locally compact G-space endowed with a continuous action of a Čech-
complete group G. A subset S ⊂ X is 1-controlling if KS is asymptotically dense in X for some
scattered compact subset K ⊂ G.

Proof. It suffices to verify that Player II has no winning strategy in the game GK(S) where K is
the family of all scattered compact subsets of G. For this we describe a simple winning strategy
of Player I in the game. His first move is the scattered compact subset K1 = K. Since KS is
asymptotically dense in X, for any response U1 ∈ N (e) of Player II, the set U1K1S is cobounded
in X, which means that Player I wins the game. �

In contrast to Theorem 1 characterizing ω-controlling sets in geometric terms as asymptoti-
cally dense subsets, Theorem 3 gives a game-theoretic characterization of 1-controlling sets but
provides no information on the geometric structure of such sets. Now we shall try to fill this
gap.

First we recall some necessary information on (ultra)filters. As expected, by a filter on a set
X we understand a collection F of non-empty subsets of X, closed under finite intersections
and taking supersets. A filter F on X is called an ultrafilter if any filter on X containing F
coincides with F . It follows from Zorn Lemma that each filter can be enlarged to an ultrafilter.
It is well-known that a filter F on X is an ultrafilter if and only if for any subset A ⊂ X either
A ∈ F or X \A ∈ F . We shall say that an (ultra)filter F on a locally compact space X converges
to ∞ if the complement X \B of any bounded set B ⊂ X belongs to F . The following theorem
shows that 1-controlling sets are asymptotically dense in a “locally-scattered” sense.
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Theorem 4. Suppose that S is a 1-controlling subset of a locally compact G-space X satisfying
the conditions of Theorem 3. Then for any convergent to ∞ ultrafilter F on X there is a
nonempty open set U ⊂ G such that for each W ∈ N (e) the set {x ∈ X : Ux ⊂ WS} belongs to
F .

Applying Theorems 1–4 to the real line R endowed with the natural action of the additive
group G = R we get

Corollary 2. Let S = {xn : n ∈ ω} be an increasing unbounded sequence in [0,+∞). Then
(1) The sequence S± = {±xn : n ∈ ω} is ω-controlling iff it is strongly limit-detecting iff S±

is asymptotically dense iff limn→∞(xn+1 − xn) = 0.
(2) The sequence S± is limit-detecting iff S± is 1-controlling if C + S± is asymptotically

dense for some compact countable set C ⊂ R;
(3) If S is 1-controlling, then

lim
n∈ω

xn

n
= 0 = lim inf

n→∞
(xn+1 − xn) ≤ lim sup

n→∞
(xn+1 − xn) < ∞.

Proof. The first two items easily follow from Theorems 1, 2, Proposition 1 and the fact that the
set S±, being unbounded in both directions, is splittable in R.

To prove the last item, assume that S± is 1-controlling and apply Theorem 3 to conclude that
Player II has no winning strategy in the game GK(S±), where K is the collection of all singletons
of the group G = R.

Assuming that lim supn→∞
xn
n > C for some positive constant C > 0, find an increasing

number sequence (nk) such that xnk
> Cnk for all k. To derive a contradiction it suffices to

construct a winning strategy for Player II in the game GK(S±). For every n ∈ N let εn =
2−(n+2)C.

The player I starts the game selecting a one-point subset {y1} ⊂ R and Player II answers with
the neighborhood U1 = (−ε1, ε1) of zero in the group G = R. At the n-th inning Player I selects
a one-point subset {yn} of R and Player II answers with the neighborhood Un = (−εn, εn)
of zero (as we see the moves of Player II do not depend on the choices of Player I). Let us
show that the described strategy of Player II is winning. Take any n ∈ ω and assume that the
complement of the set W =

⋃
i<n Ui + yi + S± in R lies in some closed interval [−a, a], a > 0.

Let b =
∑

i<n |yi| and find k such that a + b + C
2 < C

2 nk. To derive a contradiction it suffices to
verify that the set [a,Cnk] \W is not empty. This will be established as soon as we prove that
the Lebesgues measure of this set is strictly positive. For this observe that xnk

> Cnk implies
|S ∩ [0, Cnk]| < nk. Denote by λ the standard Lebesgue measure on R and observe that for each
i < n we get

λ
(
[0, Cnk] ∩ (Ui + S)

)
≤2εi + λ

(
[εi, Cnk − εi] ∩ (Ui + S)

)
≤

≤2εi + λ(Ui)|[0, Cnk] ∩ S| < 2εi + 2εink = 2−(i+1)C(1 + nk).

Next,

λ
(
[0, Cnk] ∩ (Ui + yi + S)

)
=λ

(
[−yi, Cnk − yi] ∩ (Ui + S)

)
≤

≤|yi|+ λ
(
[0, Cnk] ∩ (Ui + S)

)
< |yi|+ 2−(i+1)C(1 + nk).

Then

λ([0, Cnk] ∩W ) =λ
(
[0, Cnk] ∩

⋃
i<n

Ui + yi + S
)
≤

∑
i<n

λ
(
[0, Cnk] ∩ (Ui + yi + S)

)
<

<
∑
i<n

|yi|+ 2−(i+1)C(1 + nk) = b +
1
2
C(1 + nk)

and hence
λ([a,Cnk] \W ) =(Cnk − a)− λ([a,Cnk] ∩W ) ≥

≥Cnk − (a + b +
1
2
C(1 + nk)) =

1
2
Cnk − (a + b +

1
2
C) > 0.
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This finishes the proof of the equality limn→∞
xn
n = 0. This equality trivially implies another

equality lim infn→∞ xn+1 − xn = 0 of the last item of the corollary.
Finally, assume that lim supn→∞ xn+1−xn = +∞ and find a number sequence (nk) such that

limk→∞ xnk+1 − xnk
= +∞. For each k ∈ ω let ak = 1

2(xnk+1 + xnk
) and note that for any

C > 1 the intersection S ∩ (ak − C, ak + C) is empty for sufficiently large k. Then for the filter
F = {F ⊂ [0,+∞) : F ⊃ {ak : k > n} for some n} the conclusion of Theorem 3 fails, which is a
contradiction. �

Applying to the previous corollary the transformation ln : R → R+ we get the following
properties of (strongly) limit-detecting sequences in the half-line X = [0,+∞) endowed with the
action of the multiplicative group R+.

Corollary 3. Let S = {xn : n ∈ ω} be an increasing unbounded sequence in [0,+∞). Then
(1) The sequence S is strongly limit-detecting iff S is ω-controlling iff limn→∞

xn+1

xn
= 1.

(2) The sequence S is limit-detecting iff it is 1-controlling if CS is strongly limit-detecting
for some countable compact set C ⊂ R+;

(3) If S is limit-detecting, then 1 = lim infn→∞
xn+1

xn
≤ lim supn→∞

xn+1

xn
< ∞ and

limn→∞
ln xn
ln n = 0.

Question 1. Let S ⊂ [0,+∞) be a limit-detecting sequence. Does there exists N ∈ N such that
limx→+∞ |S ∩ [x,Nx]| = ∞?

Let us finish the introduction with some counterexamples distinguishing the limit-detecting
and κ-controlling properties.

Example 1. The sequence {± lnn : n ∈ N} is strongly limit-detecting in the real line R endowed
with the natural action of its isometry group. On the other hand, the sequence S = {lnn : n ∈ N}
is 1-controlling but not limit-detecting. This set S is not splittable.

Proof. Let e be the identity transformation of R and h : x → −x be the central symmetry of R.
The set ±S = {h, e} · S = {± lnn : n ∈ N} is strongly limit-detecting by Corollary 2.

Since {h, e} · S is strongly limit-detecting, the set S is 1-controlling according to Corol-
lary 1. This set is not limit-detecting since it cannot detect the non-existence of the limit
lim|x|→∞ arctanx. Also this set fails to be splittable since there is no isometry f of R such that
f(S) has unbounded intersection with the sets (−∞, 0) and (0,+∞). �

Example 2. There is a limit-detecting closed discrete subset S ∈ R which is not 2-controlling
with respect to the natural action of the additive group R.

Proof. In the real line R endowed with the natural action of the additive group R consider two
subsets A = {± lnn : n ∈ N} and B =

⋃
n∈Z(4n, 4n+1). The intersection A∩B is 1-controlling

since the set {0, 1, 2, 3}+ (A ∩B) is asymptotically dense in R, see Corollary 2. Since A ∩B is
unbounded in both directions, it is splittable. Applying Theorem 2 we conclude that A ∩ B is
limit-detecting. To see that the set A ∩B is not 2-controlling, observe that the shifts of A ∩B
cannot simultaneously intersect the open sets B and 2 + B. �

Next, we shall construct κ-controlling sets which fail to be n-controlling for n < κ. Our
construction will work also for infinite cardinals κ ≤ cov(M).

Example 3. For a non-zero cardinal κ ≤ cov(M) let Sκ be the group of all bijections of κ.
Consider the product X = R × κ as a G-space with the coordinatewise action of the group
G = R × Sκ. Using the asymptotical density of the set {± lnn : n ∈ N} in R and Theorem 1,
it is easy to show that the set S = {± lnn : n ∈ N} × (κ \ {0}) is λ-controlling for any cardinal
λ < κ in R× κ. On the other hand, it is obvious that S fails to be κ-controlling.

According to Proposition 1 any finite-dimensional Banach space X contains a sequence S =
{xn}∞n=1 with limn→∞ ‖xn‖ = ∞ which is 1-controlling in the sense that for any unbounded
open set U ⊂ X the intersection (a + S) ∩ U is unbounded for some a ∈ X. It is interesting to
note that such 1-controlling sequences do not exist in infinite-dimensional Banach spaces.
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Proposition 4. If X is an infinite-dimensional Banach space and S = {xn : n ∈ ω} ⊂ X is
a sequence such that limn→∞ ‖xn‖ = ∞, then there is an unbounded open set U ⊂ X such that
the intersection (a + S) ∩ U is bounded for any a ∈ X.

Proof. Denote by Bn = {x ∈ X : ‖x‖ ≤ n} the n-ball around centered at zero. For every n ∈ ω
let Sn = S ∩B2n+1.

We shall apply a classical Riesz almost orthogonality Lemma [8, p.11] asserting that for any
finite-dimensional subspace F of an infinite-dimensional normed space X there is an element
x ∈ X with ‖x‖ = 3 and dist(x, F ) > 2. Apply the Riesz Lemma to construct a sequence
(yn)n≥3 such that ‖yn‖ = n and dist(yn, Fn) > 2 for the finite set

Fn = Sn +
⋃
i<n

yi − Si.

Consider the unbounded open set U =
⋃

n≥3 yn + B1. We claim that for every g ∈ X the
intersection (g + S) ∩ U is finite. Assuming the converse find m > n > 3 such that g ∈ Bn and
(g +S)∩ (yn +B1) 6= ∅ 6= (g +S)∩ (ym +B1). Consequently, we can find points g + sn = yn + bn

and g + sm = ym + bm, where sn, sm ∈ S and bn, bm ∈ B1. Subtracting the second equality from
the first one, we get ym − (yn + sm − sn) = bn − bm. Note that ‖sn‖ = ‖yn + bn − g‖ ≤ 2n + 1
and ‖sm‖ = ‖ym + bm − g‖ ≤ m + n + 1 < 2m + 1. Consequently, ‖ym − (yn + sm − sn)‖ ≤ 2
and yn + sm − sn ∈ yn + Sm − Sn ⊂ Fm, which contradicts to the choice of the point ym. �

Finally let us formulate some open problems.

Question 2. Let S be a limit-detecting subset S of the half-line [0,+∞) endowed with the natural
action of the multiplicative group R+. Is KS asymptotically dense in [0,+∞) for some scattered
compact set K ⊂ R+?

In other words does the existence of a winning strategy of Player I in the game GK(S) (where
K is the family of scattered compact subsets of R+) imply that Player I can always win at the
first move?

Consider the Euclidean space X = Rn endowed with the natural action of the matrix group
G = GL(n). The action of G on Rn is open on the complement of zero, but fails to be discrete.
Thus Theorems 2, 3 are not applicable.

Question 3. Is any 1-controlling unbounded sequence in X = Rn limit-detecting?

1. Proof of Theorem 1

Let S be a subset of a locally compact space X endowed with a continuous action of a Baire
topological group G.

At first, we prove the implications (1)⇒(2)⇒(3)⇒(1).
(1) ⇒ (2) If the set S ⊂ X fails to satisfy the condition (2), then for some U ∈ N (e) the

closure of the product US in X has unbounded complement W = X \US. It is easy to construct
a continuous function f : X → R which has no limit limx→∞ f(x) but vanishes on the closed set
X \W = US, see the proof of Lemma 6. In this case limS3x→∞ f(gx) = 0 for all g ∈ U and,
consequently, S fails to be strongly limit-detecting.

(2) ⇒ (3) Assuming (2) we first show that for each open unbounded subset W ⊂ X the set
H = {g ∈ G : gS∩W 6= ∅} is open and dense in G. The openness of H trivially follows from the
continuity of the action G on X. To prove the density of H in G, fix arbitrary point g ∈ G and
an open neighborhood U ∈ N (e). It follows from (2) that the closure of the set US has bounded
complement in X. The unboundedness of the open set W and its shift gW implies that the
intersection US ∩ g−1W is not empty and thus contains some point g−1w. Then gUS ∩W 3 w
and hence gU ∩ H 6= ∅, which means that H is dense in G. It remains to prove that the set
{g ∈ G : gS ∩W is unbounded in X} is dense Gδ in G. For this write the locally and σ-compact
space X as a countable union of compact subsets X =

⋃
n∈ω Xn such that each Xn lies in the

interior of Xn+1. Then each bounded subset of G lies in some Xn.
For every n ∈ ω the set W \ Xn is unbounded and open in X. The above argument yields

that the sets Hn = {g ∈ G : gS ∩ (W \Xn) 6= ∅} are open and dense in G for all n. Since the
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group G is Baire, the countable intersection
⋂

n∈ω Hn = {g ∈ G : gS ∩W is unbounded in X}
is dense Gδ in G.

(3)⇒(1) Let f : X → R be a continuous function having no limit limx→∞ f(x). Then
there are two open subsets U1, U2 ⊂ R with disjoint closures whose preimages f−1(U1), f−1(U2)
are unbounded in X. The condition (3) implies that the set A = {g ∈ G : gS ∩ f−1(U1)
and gS ∩ f−1(U2) are unbounded in X} is dense Gδ in X and consequently, meets each open
neighborhood W ∈ N (e). Then for each g ∈ A ∩ W the limit limS3x→∞ f(gx) fails to exist.
This means that the set S is strongly limit-detecting.

The implication (4)⇒(2) is trivial. To prove the inverse implication, assume that the action
of the group G on X is open on the complement of some bounded set B ⊂ X. Fix any
neighborhood U ∈ N (e) and find a neighborhood W ∈ N (e) such that W−1W ⊂ U . The
condition (2) implies that the complement X \ WS lies in some compact subset K ⊂ X. We
claim that X \ (B ∪K) ⊂ US. Take any point x ∈ X \ (B ∪K). Since the action of the group
G on X is open on X \ B, Wx is a neighborhood of x. The density of WS in X \ K implies
that the intersection WS ∩Wx is not empty. Then x ∈ W−1WS ⊂ US and hence the set US
has bounded complement in X.

The implication (3)⇒(5) trivially follows from the Baire-ness of G.
Next, assuming that the group G is ω-bounded we shall prove the implication (5)⇒(1). It

suffices to show that for any open unbounded subsets U1, U2 ⊂ X and a neighborhood W ∈ N (e)
of the unit in G there is an element g ∈ W such that the intersections gS ∩ U1, gS ∩ U2 are
unbounded. The group G, being ω-bounded, contains countable subset C such that CW = G.
It follows from (5) that there is an element a ∈ G such that the intersections aS ∩ cU1, aS ∩ cU2

are unbounded for any c ∈ C. Taking into account that a ∈ G = CW , find an element c ∈ C
such that a ∈ cW . For this element c, the intersections aS ∩ cUi, i = 1, 2, are unbounded. Then
the intersections c−1aS ∩ Ui, i = 1, 2, are unbounded as well. It remains to observe that the
element g = c−1a belongs to the set W .

Finally, assume that the group G is Polish. The implication (6)⇒(5) is trivial. To finish the
proof of the theorem it suffices to verify that (3)⇒ (6). Fix a family U of unbounded open
subsets of X of size |U| < cov(M) and for each U ∈ U consider the set AU = {g ∈ G : gS ∩ U
is unbounded} which is dense Gδ-set in G by (3). It follows from the definition of the cardinal
cov(M) that the intersection

⋂
U∈U AU contains some point g ∈ G. For this point all the

intersections gS ∩ U , U ∈ U , are unbounded, which finishes the proof.

2. Proof of Theorem 3

Theorem 3 follows from the cycle of implications (2) ⇒ (3)
L2,4
=⇒ (1)

L2,5
=⇒ (2), the first of which

is trivial (last two implications will be proved in the indicated lemmas).
We shall need the game characterization of scattered compacta due to Galvin, see [12]. This

characterization asserts that a compact space is scattered if and only if Player I has a winning
strategy in the game “Point-Finite”. For the convenience of the reader we give a short proof
of the “only if” part of this characterization (which will be used in the proof of the subsequent
Lemma 2).

Lemma 1. If K is a compact Hausdorff scattered space, then Player I has a winning strategy
in the “Point-Open” game on K.

Proof. Let K(1) = K be the set of all non-isolated points of K. For each ordinal α by recursion
define the α-th derived set K(α) =

⋂
β<α(K(β))(1). Since K is scattered, each non-empty K(α)

has an isolated point, which means that K(α) 6= K(α+1). Consequently, K(α) = ∅ for some
ordinal α. The smallest ordinal α for which K(α) is finite is called the scattered height of K.

Now we are able to define a winning strategy of Player I in the game “Point-Open” on K. He
looks at the finite set F1 = K(α0), where α0 is the scattered height of K and his first n1 = |F1|
moves in the “Point-Open” game are just the points x1, . . . , xn1 of the set F1. During these n1

moves the second player answers with some open neighborhoods Ox1, . . . , Oxn1 of these points.
Then the first player looks at the set W1 =

⋃
i≤n1

Oxi. If this set equals K, then Player I wins the



10 T.O. BANAKH, S.I. PIDKUYKO

game. Otherwise he calculates the scattered height α1 of the scattered compactum K1 = K \W1

(it is important to note that α1 < α0). Then Player I looks at the finite set F2 = K
(α1)
1 and

his next n2 = |F2| moves are just points xn1+1, . . . , xn1+n2 of the set F2. Player I receives the
answers Oxi, n1 < i ≤ n1 + n2, of Player II and looks at the set W2 =

⋃
1≤i≤n1+n2

Oxi. If this
set equals K, then Player I wins.

Otherwise he calculates the scattered height α3 < α2 of the scattered compactum K3 = K\W3

and so on. Since no strictly decreasing sequence of ordinals is infinite, the game must stop at
some finite step by the victory of Player I. �

The Galvin Lemma allows us to prove the following useful reduction result.

Lemma 2. Let S be a subset of a locally G-space X, K be a collection of scattered compact
subsets of X, and P = {{x} : x ∈ ∪K}. The player I or II has a winning strategy in the game
GK(S) if and only if he has a winning strategy in the game GP(S).

Proof. To prove this lemma use the winning strategy of Player I in the “Point-Open” game on
scattered compacta and also the well-known fact that for any open neighborhood O(K) of a
compact subset K in a topological group G there is an open neighborhood U of the unit in G
such that US ⊂ O(K). �

Lemma 3. Let X be a σ-compact locally compact G-space endowed with a continuous action of
a Baire group G. Let U be an open non-empty subset of G and O be an open subset of X such
that gS ∩O is bounded in X for each g ∈ U . Then there are a point g ∈ U and a neighborhood
V ∈ N (e) of the unit in G such that the intersection V S ∩ g−1O is bounded in X.

Proof. Write X =
⋃

n∈ω Xn as a countable union of an increasing sequence of compact subsets
Xn of X. For every n ∈ ω consider the closed subset Fn = {g ∈ U : gS ∩ O ⊂ Xn} of U and
observe that U =

⋃
n∈ω Fn. Applying Baire Theorem to the locally compact space U , find n ∈ ω

such that the set Fn has non-empty interior. This allows us to find V ∈ N (e) and g ∈ Fn with
gV ⊂ Fn. Then gV S ∩O ⊂ Xn and hence V S ⊂ g−1Xn is bounded in X. �

The following lemma in combination with Lemma 2 proves the implication (3) ⇒ (1) of
Theorem 3.

Lemma 4. Let X be a σ-compact locally compact G-space endowed with a continuous action of
a Čech-complete group G. If a set S ⊂ X is not 1-controlling, then the player II has a winning
strategy in the game GK(S), where K is the family of all one-point subsets of X.

Proof. Assuming that S fails to be 1-controlling, find an open unbounded subset O of X such
that gS ∩O is bounded in X for each g ∈ G.

The space X, being σ-compact and locally compact, can be written as a union X =
⋃

n∈N Xn

of an increasing sequence of compact subsets such that each Xn lies in the interior of Xn+1.
The Čech-complete group G, being a Gδ-set in its Stone-Čech compactification βG, is the

intersection G =
⋂

n=1 Gn of a decreasing sequence (Gn) of open subsets of βG.
Now we describe a winning strategy for Player II in the game GK(S). Playing the game he

will construct two sequences (Un) and (Vn) of neighborhoods of the unit in G and sequences
(gn) and (xn) of points of G and X, respectively. The set Un will be the answers of Player II
in the n-th inning while other objects play an auxiliary role in the inductive construction. Let
U0 = G.

Given the first move {t1} ⊂ G of Player I, Player II applies Lemma 3 to find a point g1 ∈ U0

and a neighborhood V1 ⊂ U0 of the unit in G such that V1(t1S) ∩ g−1
1 O is bounded in X. This

allows him to select a point x1 ∈ O\(X1∪g1V1t1S) and a neighborhood U1 of the unit in G such
that U1 = U−1

1 , U4
1 ⊂ V1, U1x1 ⊂ O, and closure of g1U

2
1 in βX lies in G1. The neighborhood

U1 is the answer of II in the 1-st inning.
Continuing in this fashion, at the n-th inning the second player receives the n-th move {tn} ⊂

G of Player I and applies Lemma 3 to find a point gn ∈ Un−1 and a neighborhood Vn ⊂ Un−1

of the unit in G such that the intersection VntnS ∩ (g1 · · · gn)−1O is bounded in X. Then he
selects a point xn ∈ O \ (Xn ∪

⋃
k≤n(g1 · · · gk)VktkS) and a neighborhood Un of the unit in G
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such that Un = U−1
n , U4

n ⊂ Vn, Unxn ⊂ O, and the closure of g1 · · · gnU2
n in βG lies in Gn. The

neighborhood Un is the answer of II in his n-th move.
We claim that the described strategy of the player II is winning in the game GS . We have to

verify that for each n the set
⋃

i<n UitiS has unbounded complement in X.
Let g∞ be a cluster point of the sequence (g1 · · · gn)n∈N in βG. First we show that g∞ ∈ G.

Indeed, for any n < m we get

g1 · · · gm ∈ g1 · · · gm−2Um−2Um−1 ⊂ g1 · · · gm−2U
2
m−2 ⊂ g1 · · · gm−3Um−3U

2
m−2 ⊂

⊂ g1 · · · gm−3U
2
m−3 ⊂ · · · ⊂ g1 · · · gnU2

n ⊂ clβG(g1 · · · gnU2
n) ⊂ Gn

and thus g∞ ∈
⋂

n≥1 clβG(g1 · · · gnU2
n) ⊂

⋂
n≥1 Gn = G.

Assuming that for some n the set
⋃

i<n UitiS is cobounded in X, we would find m > n such
that g−1

∞ xm ∈
⋃

i<n UitiS. Then

xm ∈
⋃
i<n

g∞UitiS ⊂
⋃
i<n

(g0 · · · gi)U2
i UitiSi ⊂

⋃
i<n

(g0 · · · gi)U3
i UitiSi ⊂

⋃
i<n

(g0 · · · gi)VitiS,

which contradicts to the choice of the point xm. �

Thus the implication (3)⇒(1) of Theorem 3 has been proved. The following lemma in com-
bination with Lemma 2 proves the implications (1) ⇒ (2) of Theorem 3.

Lemma 5. Let X be a σ-compact locally compact space endowed with a continuous discrete
almost open action of a σ-compact locally compact group G. Let D ⊂ G be a Gδ-set with
cobounded closure in G and let K be the collection of all compact scattered subsets of D. A
countable closed subset S ⊂ X fails to be 1-controlling if Player I has no winning strategy in the
game GK(S).

Proof. Assume that Player I has no winning strategy in the game GK(S).
The group G, being locally and σ-compact, can be written as a union G =

⋃
n∈ω Gn of an

increasing sequence of compact neighborhoods of the unit such that Gn = G−1
n and GnGn ⊂

Gn+1 for all n. Similarly, the space X can be written as a union X =
⋃

n∈ω Xn of an increasing
sequence of compact subsets such that GnXn lies in the interior of Xn+1 for all n.

Since the action of G on X is discrete and almost open, there is a G-invariant open set
L ⊂ X with cobounded closure L̄ in X such that for each x ∈ L the shift g 7→ gx is a local
homeomorphism of G onto an open subset of X.

Consider the set E = L \ ((G \D) · S), which is a dense Gδ in L. To see that it is indeed so,
write G \ D as a countable union G \ D =

⋃
n∈ω Kn of compact subsets Kn ⊂ G and observe

that
E =

⋂
s∈S,n∈ω

L \ (Kns).

Each set L \Kns is open, being the complement of the compact set Kns. To see that L \Kns is
dense in L, use the fact that Kn is nowhere dense in G and for each x ∈ L the map g 7→ gx is a
local homeomorphism. Now Baire theorem implies that the set E, being a countable intersection
of open dense subsets in the locally compact space L, is dense Gδ in L.

Now let us describe a strategy of Player I in the game GK(S). He starts the game picking
any element x1 ∈ E and considers the set F1 = {g ∈ G1 : x1 ∈ gS}. This set belongs to D by
the choice of E 3 x1. Since both S and the stabilizer St(x1) = {g ∈ G : gx1 = x1} of x1 are
countable, the set F1 is a closed countable subset of the compactum G1. Being countable and
compact, the set F1 is scattered. The second player answers with a neighborhood U1 of the unit
in G.

At the n-th move, Player I receives the (n − 1)-th move Un−1 of Player II and chooses
an open neighborhood Vn−1 ∈ N (e) with V 2

n−1 ⊂ Un−1. Then he looks at the set Rn =
E \ (Xn ∪

⋃
i<n FiViS). If this set is empty, then the n-th move of the first player is the empty

set Fn = ∅. In the opposite case, he picks any element xn of the set Rn and his n-th move is the
scattered compact subset Fn = {g ∈ Gn : xn ∈ gS} of D.

By our hypothesis, the described strategy of the first player cannot be winning, which means
that for some sequence {Un}n∈ω ⊂ N (e) the sets Rn constructed in the process of the game are
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not empty for all n. As a result, following the described strategy, the first player constructs the
unbounded sequence of points xn ∈ Rn and neighborhoods Vn with V 2

n ⊂ Un, n ∈ ω.
Take any decreasing sequence (Wn) of neighborhoods of the unit in G such that W0 ⊂ G0,

W−1
n Wn ⊂ Vn ∩ Wn−1 and Wnxn ∈ X \ Xn for all n. Finally, consider the unbounded open

subset O =
⋃

n∈ω Wnxn of X.
We claim that for each g ∈ G the intersection gS ∩ O is bounded. Assuming that it is

not so, we would find numbers n < m such that g ∈ Gn−1 and gS meets both Wnxn and
Wmxm. Since gS ∩ Wnxn 6= ∅ and hence W−1

n gS 3 xn, there is an element gn ∈ W−1
n g

such that gnS 3 xn. Observe that gn ∈ W−1
n g ∈ G0Gn−1 ⊂ Gn and thus gn ∈ Fn. Then

xm ∈ W−1
m gS ⊂ W−1

m WngnS ⊂ VnFnS, which contradicts to the choice of xm. Therefore
for each g ∈ G the intersection gS ∩ O is bounded, which means that the set S fails to be
1-controlling. �

3. Proof of Theorem 2

The “only if” part of Theorem 2 is almost trivial and follows from

Lemma 6. Suppose S is a limit-detecting subset of a σ-compact locally compact G-space X.
Then S is 1-controlling and splittable.

Proof. The space X, being σ-compact and locally compact, can be written as the union X =⋃
n∈N Xn of an increasing sequence of compact subsets such that each Xn lies in the interior of

Xn+1. Assuming that S fails to be 1-controlling, find an open unbounded subset U ⊂ X such that
for each g ∈ G the intersection gS ∩ U is bounded. For every n ∈ ω select a point xn ∈ U \Xn

and find a number m(n) ∈ ω such that xn ∈ Xm(n). Then take any neighborhood Oxn ∈
Xm(n)+1 \ Xn and using the Tychonov property of locally compact spaces, find a continuous
function fn : X → [0, 1] such that fn(xn) = 1 and f−1

n (0, 1] ⊂ Oxn.
Replacing (xn) by a suitable subsequence we can assume that the neighborhoods Oxn, n ∈ ω,

are pairwise disjoint. Then f =
∑

n∈ω f2n : X → [0, 1] is a continuous function having no limit
limx→∞ f(x) at ∞. On the other hand, for each g ∈ S the intersection gS ∩ f−1(0, 1] ⊂ gS ∩ U
is bounded and thus limS3x→∞ f(gx) = 0. This shows that the set S fails to be limit-detecting.

To show that S is splittable, fix two disjoint unbounded open subsets U, V ⊂ X with
cobounded union U∪V in X. Find a compact subset K ⊂ X such that K∪U∪V = X. Then the
set K∪U = X \ (V \K) is closed in X. Using the compactness of K and the Tychonov property
of the locally compact space K∪U , construct a continuous function f : K∪U → [0, 1] such that
f(K) = {0} and f−1[0, 1) is bounded in X. Define f on V letting f |V ≡ 0. Then f : X → [0, 1]
is a continuous function which has no limit limx→∞ f(x). Since S is limit-detecting, there is
g ∈ G such that the restriction f |gS has no limit at infinity. It follows that both the intersections
gS ∩ U and gS ∩ V are unbounded and hence S is splittable. �

The proof of the “if” part of Theorem 2 is less trivial and uses the characterizing Theorem 3
as well as the Baire Theorem on continuity points of Fσ-measurable functions.

We recall that a function f : T → R on a topological space T is called Fσ-measurable if the
preimage f−1(U) of each open set U ⊂ R is of type Fσ in X, which means that f−1(U) is a
countable union of closed subsets of T . By C(f) we shall denote the set of continuity points of
f . The following classical result belongs to Baire, see [9, 24.14].

Lemma 7. If f : T → R is an Fσ-measurable function on a Baire topological space T , then the
set C(f) of continuity points of f is dense Gδ-set in T .

The following Lemma proves the “if” part of Theorem 2.

Lemma 8. Let X be a σ-compact locally compact G-space endowed with a continuous discrete
almost open action of a σ-compact locally compact group G. A subset S ⊂ X is limit-detecting
provided it is 1-controlling and splittable.

Proof. Assume that S is 1-controlling and splittable. By Lemmas 2 and 5 for any dense Gδ-set
D ⊂ G Player I has a winning strategy in the game GK(S) where K is the family of all one-point
subsets of D.



LIMIT-DETECTING SEQUENCES 13

To show that S is limit-detecting, fix any bounded continuous function f : X → R having
no limit limx→∞ f(x). Let f̄ : βX → R be the continuous extension of f onto the Stone-Čech
compactification of X. Then f̄(βX \X) is compact in R and we can put a = min f̄(βX \X),
A = max f̄(βX \X). Since f has no limit at infinity, a < A.

If f̄(βX \X) 6= [1, A], then we can find two points c < C such that [c, C] ⊂ [a,A]\ f̄(βX \X).
Now consider two disjoint open unbounded subsets U = f−1(−∞, c) and V = f−1(C,+∞) of
X. It is easy to see that U ∪ V is cobounded in X. Since S is splittable, there is g ∈ G such
that the intersections gS ∩ U and gS ∩ V are unbounded. Then

lim inf
S3x→∞

f(gx) ≤ c < C ≤ lim sup
S3x→∞

f(gx),

which means that the restriction f |gS has no limit at infinity.
Next, we consider the case f̄(βX \ X) = [a,A]. Multiplying f by a suitable constant, we

can assume that A − a > 1. To derive a contradiction, assume that for each g ∈ G the limit
Φ(g) = limS3x→∞ f(gx) exists. Thus we obtain a bounded function Φ : G → R. We claim that
this function is Fσ-measurable. Indeed, given an open subset U ⊂ R write U =

⋃∞
n=1 Un as a

union of open subsets of U such that Ūn ⊂ Un+1 for every n ∈ N. Let also S = {sk : k ∈ N} be
any enumeration of the sequence S. Then

Φ−1(U) = {g ∈ G : lim
m→∞

f(gsm) ∈ U} =
∞⋃

n,k=1

⋂
m≥n

{g ∈ G : f(gsm) ∈ Uk},

being a countable union of the closed sets
⋂

m≥n{g ∈ G : f(gsm) ∈ Uk}, n, k ∈ N, is an Fσ-set
in G.

Thus the function Φ : G → R is Fσ-measurable and the set D = C(Φ) of continuity points of
Φ is dense Gδ in G according to the Baire Lemma 7. According to Lemmas 2 and 5, Player I
has a winning strategy in the game GK(S), where K is the family of all one-point subsets of D.

To derive a final contradiction it suffices to describe a winning strategy of Player II in the
game GK(S). After the first move {g1} ⊂ D of the first player, the second player chooses
a neighborhood U1 of the unit in G such that diamΦ(U1g1) < 1

2 . Continuing in this way, in
response to the n-th move {gn} ⊂ D of the first player, the second player chooses a neighborhood
Un of the unit in G such that diamΦ(Ungn) < 2−n.

We claim that the described strategy of the second player is winning, which means that⋃
i<n UigiS has unbounded complement for each n. Assuming the converse we would find n ∈ N

such that the closure of
⋃

i<n WigiS in βX contains the remainder βX \ X. Observe that⋃
i<n WigiS =

⋃
i<n WigiS and diamf̄(WigiS \X) ≤ diamΦ(Wigi) < 2−i for all i < n. Then

1 < A− a = diamf̄(βX \X) ≤
∑
i<n

diamf̄(WigiS \X) ≤
∑
i<n

1
2i

< 1,

which is a contradiction. �

4. Proof of Theorem 4

Let S be a 1-controlling subset of a locally compact G-space satisfying the conditions of
Theorem 3. This theorem implies that Player II has no winning strategy in the game GK(S),
where K is the collection of all one-point subsets of G. We shall show that for each convergent
to ∞ ultrafilter F on X there is a nonempty open subset U ⊂ G such that for any W ∈ N (e)
the set {x ∈ X : Ux ⊂ WS} ∈ F .

Assuming the converse we would find an ultrafilter F such that

(?) ∀U ⊂
op

G ∀y ∈ X ∃W ∈ N (e) {x ∈ X : Ux 6⊂ W−2WyS} ∈ F .

Here we used a well-known property of ultrafilters asserting that A /∈ F is equivalent to X \A ∈
F .

To get a contradiction, it suffices to describe a winning strategy of Player II in the game
GK(S), where K is the collection of one-point subsets of G. Fix any bounded neighborhood W0

of the unit in G.
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The game GK(S) starts with the 1-st move {y1} ⊂ G of Player I. Using the property (?) for
the open set U = W0 and the point y1 Player II find a neighborhood W1 ∈ N (e) such that
W 2

1 ⊂ W0 and F1 = {x ∈ X : W0x 6⊂ W−2
1 W1y1S} ∈ F . The neighborhood W1 is the 1-st

move of Player II in the game GK(S). Continuing in this way, after the n-th move {yn} ⊂ G
of Player I, Player II applies (?) to find a neighborhood Wn ∈ N (e) with W 2

n ⊂ Wn−1 and
Fn = {x ∈ X : Wn−1x 6⊂ W−2

n WnynS} ∈ F . The set Wn is the answer of Player II in the n-th
inning.

To show that the described strategy is winning, assume that for some n ∈ ω the set
⋃

i<n WiyiS

has bounded complement B in X. Since F converges to ∞, the set
⋂

i≤n Fn \W−2
0 B contains

some point x0. For this point we get W 2
0 x0 ∩B = ∅.

It follows from the choice of W1 that there is a point x1 ∈ W0x0 \W−2
1 W1y1S. For this point

we get W 2
1 x1 ∩ W1y1S = ∅. Continuing by induction we shall construct a finite sequence of

points x0, x1, . . . , xn such that xi ∈ Wi−1xi−1 \W−2
i WiyiS and thus W 2

i xi ∩WiyiS = ∅.
Observe that

xn ∈ Wn−1xn−1 ⊂ Wn−1Wn−2xn−2 ⊂ W 2
n−2xn−2 ⊂ W 2

n−2Wn−3xn−3 ⊂ W 2
n−3xn−3 ⊂ · · · ⊂ W 2

i xi

for all i < n. Since W 2
i xi ∩WiyiS = ∅, we conclude that xn /∈

⋃
i<n WiyiS and, consequently,

xn ∈ B, which contradicts to xn ∈ W 2
0 x0 ⊂ X \B.
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