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Abstract. We investigate the inteplay between the algebraic structure of a group G
and arithmetic properties of its spectrum σ(G) which consists of the eigenvalues of all
the inner automorphisms of G. A complex number λ is called an eigenvalue of a group
automorphism A : G → G if ϕ ◦ A|H = λ · ϕ for some non-trivial homomorphism
ϕ : H → C defined on an A-invariant subgroup H ⊂ G.

It is shown that many properties of a group G (such as the presence of a finitely
generated subgroup of infinite rank, nilpotence, periodicity, polycyclicity, etc) are coded
in its spectrum. In the paper the spectra are applied to investigate the so-called reversive
properties of groups. The paper ends with a list of related open problems.

Introduction

In this paper we study the interplay between the algebraic structure of a group G
and arithmetric properties of its spectrum σ(G). By definition, the spectrum σ(G) of
a group G is the subset of the complex plane C , consisting of the eigenvalues of the
inner automorphisms of G. A complex number λ ∈ C is defined to be an eigenvalue
of an automorphism A : G → G of a group G is there is a non-trivial homomorphism
ϕ : H → C from an A-invariant subgroup H of G such that ϕ ◦ A|H = λ · ϕ. The
homomorphism ϕ can be thought as an eigenvector corresponding to the eigenvalue λ (for
a more deep analysis of the nature of eigenvalues of group automorphisms see Section
6). The set σ(A) ⊂ C of all eigenvalues of the automorphism A : G → G is called the
spectrum of A. As we said, the spectrum of a group G is the union of the spectra of all
inner automorphisms ig : G→ G, g ∈ G, of G (here ig : x 7→ gxg−1).

It should be mentioned that in case of an automorphism A : G → G of an abelian
torsion-free group G of finite rank our notion of an eigenvalue agrees with the classical
one: λ ∈ C is an eigenvalue of A if and only if λ is an eigenvalue of the matrix M of A in
any basis of G (that is, λ is a root of the characteristic polynomial det(zE −M) of the
matrix M).

This fact allows us to reduce the problem of determining the spectrum of a group
automorphism to calculating the roots of the characteristic polynomials of certain induced
automorphisms of some torsion-free abelian groups. Such a reduction is described in the
second section of the paper. It turns out that the algebraic structure of a group G imposes
some restrictions onto the spectra of automorphisms of G. In particular, if G has finite
rank r (in the sense that every finitely generated subgroup of G is generated by ≤ r
elements), then the spectrum σ(A) of any automorphism A of G lies in the set A∗(r) of
non-zero algebraic numbers of degree ≤ r. If G is a solvable group with finite Hirsch rank
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h(G), then the cardinality of the spectrum σ(A) does not exceed h(G). If G is a polycyclic
group, then σ(A) lies in the set A∗

1 of units of the ring of integer algebraic numbers.
In the third section these results on spectra of group automorphisms are applied to

studying the interplay between the structure of a group G and the properties of its spec-
trum σ(G). It is shown that the spectrum σ(G) of a group G of finite rank r lies in the set
A∗(r) while the spectrum of a polycyclic group lies in the set A∗

1. Moreover, the inclusion
σ(G) ⊂ A∗

1 characterizes polycyclic groups in the class of solvable groups of finite rank.
The condition σ(G) ⊂ ∞

√
1 where ∞

√
1 = {z ∈ C : zn = 1 for some n ∈ N} characterizes

virtually nilpotent groups in the class of polycyclic groups while the inclusion σ(G) ⊂ {1}
characterizes so-called periodically Engelian groups in the class of locally solvable groups.
Finally, the condition σ(G) = ∅ characterizes periodic groups G. On the other hand, a
group G has the maximal possible spectrum σ(G) = C∗ if and only if σ(G) contains a
transcendental number (in this case the group G must have infinite rank). In the third
section we also study the algebraic structure of the spectrum of a solvable group G of fi-
nite rank. Using the Kolchinov-Malcev Theorem on triangulable matrix groups, we show
that each solvable group G of finite rank contains a subgroup H of finite index whose
spectrum σ(H) is finitely splittable in the sense that there is a family Φ of homomor-
phisms ϕ : H → C , whose size |Φ| does not exceed the Hirsch rank of H, such that

σ(H) =
⋃

ϕ∈Φ ϕ(H). In this case, σ(H) ⊂ σ(G) ⊂ n
√
σ(H) for some n ∈ N.

In light of the last result it should be mentioned that the spectrum behaves nicely with
respect to many operations over groups. In particular, σ(G×H) = σ(G) ∪ σ(H) for any
groups G,H. If H is a (normal) subgroup of G, then σ(H) ⊂ σ(G) (and σ(G/H) ⊂ σ(G)).

IfH has finite index [G : H] in G, then σ(H) ⊂ σ(G) ⊂ n
√
σ(H) for some n ∈ N depending

only on [G : H]. By its nature, the spectrum belongs to local properties of a groups.
Namely, σ(G) = ∪{σ(H) : H is a 2-generated subgroup of G}.

In the forth section we show that the spectrum σ(G) of a group G is completely de-
termined by the relation between G and the so-called test groups Affλ(C), λ ∈ C∗. By
definition, Affλ(C) = 〈z + 1, λz〉 is the abelian-by-cyclic subgroup of the “az + b” group
Aff(C) of affine transformations of the complex plane C , generated by two tarnsforma-
tions: w = z + 1 and w = λz. It should be mentioned that the groups Affλ(C), λ ∈ C∗,
have been appeared in Combinatorial Group Theory [MKS, §3.4] (see also [FM] for their
asymptotic properties). The algebraic structure of a group Affλ(C) depends essentially
on the arithmetic properties of the complex number λ. In particular, for a transcen-
dental λ the group Affλ(C) has infinite rank and satisfies σ(Affλ(C)) = C∗. On the
other hand, for an algebraic number λ the spectrum of Affλ(C) consists of the numbers
{λn

1 , . . . , λ
n
d : n ∈ Z} where λ1, . . . , λd are the roots of the minimal polynomial of λ. In

fact, the spectrum completely determines the algebraic structure of the groups Affλ(C):
two groups Affλ(C) and Affµ(C) are isomorphic if and only if σ(Affλ(C)) = σ(Affµ(C)).
The groups Affλ(C) determine the spectrum of an arbitrary group G in the sense that
σ(G) = {λ ∈ C∗ : Affλ(C) is isomorphic to a quotient group of some subgroup of G}.

This fact allows us to make an upper estimation for the spectrum of a group pessessing
certain group property P , hereditary in the sense that each subgroup and each quotient
group of a group possessing the property P have that property. More precisely, the
spectrum σ(G) of a group G possessing a hereditary property P lies in the set {λ ∈ C∗ :
Affλ(C) has the property P}.

One of such hereditary properties, namely, the (n,m)-reversivity is studied in the fifth
section. This property is defined as follows. Given a subset A of a group G define its
n-th oscillators (±A)n and (∓A)n by induction: (±A)0 = (∓A)0 = {e} while (±A)n+1 =
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A · (∓A)n and (∓A)n+1 = A−1 · (±A)n for n ≥ 0. Given m ∈ N we put Am = {a1 · · · am :
a1, . . . , am ∈ A} ⊂ G and A∞ =

⋃
m∈NA

m. A group G is defined to be (n,m)-reversive for
some n ∈ N and m ∈ N ∪ {∞} if (∓A)n ⊂ (±Am)n for any subset A ⊂ G containing the
unit of the group G. The notion of an (n,m)-reversive group, which came from topological
algebra (see [BR]), generalizes the more familiar concepts of a collapsing group and a group
containing no free semigroup with two generators. Namely, a group G is (2,∞)-reversive
(resp. (2,m)-reversive for some m ∈ N) if and only if G contains no free semigroup
with two generators (resp. is collapsing in the sense of [SS], [Sh]). The main result of
the fifth section asserts that σ(G) ⊂ {z ∈ C : |z| = 1} for any (n,∞)-reversive group
G. Moreover, if G is (n,m)-reversive for some n,m ∈ N, then σ(G) ⊂ k

√
1 for some

k ∈ N depending only on n and m. This result implies that for a polycyclic group G
the following conditions are equivalent: (i) G is virtually nilpotent; (ii) G is collapsing;
(iii) G contains no free semigroup with two generators; (iv) G has polynomial growth,
(v) G is (n,∞)-reversive for some n ∈ N; (vi) G is (2,m)-reversive for some m ∈ N; (vii)
σ(G) is a bounded subset of C ; (viii) σ(G) ⊂ k

√
1 for some k. It should be mentioned

that some of the above equivalence are well-known. In particular, (i)⇔(iv) follows from
the famous Gromov Theorem [Gr] on the equivalence of the virtual nilpotence and the
polynomial growth in the class of finitely generated groups, while (i)⇔(iii) was proven by
J. Rosenblatt in [Ro].

In the final sixth section we make some comments on the nature of eigenvalues of group
automorphisms and pose several open problems related to group spectra.

1. Notation and terminology

As usual, by C , R, Q, Z, and N we denote sets of complex, real, rational, integer,
and positive integer numbers, respectively; T = {z ∈ C : |z| = 1} will stand for the
unit circle in the complex plane, C∗ = C \ {0} for the multiplicative group of non-zero
complex numbers, and ω = {0} ∪ N for the first infinite ordinal. By Card(A) we denote
the cardinality of a set A; “iff” is an abbreviation for “if and only if”.

1.1. Algebraic numbers. A complex number λ ∈ C is algebraic if λ is a root of a
polynomial P (z) with rational coefficients. The smallest degree of such a polynomial is
called the degree of an algebraic number λ and is denoted by deg(λ). For any algebraic

number λ there is a unique polynomial with rational coefficients P (z) =
∑d

i=0 aiz
i of

degree d = deg(λ) such that ad = 1 and P (λ) = 0. This polynomial is called the
minimal polynomial of λ. Two algebraic numbers are called algebraically conjugated if
their minimal polynomials coincide. It is well known (and can be easily shown) that a
complex number λ is algebraically conjugated to an algebraic number µ if and only if λ
is a root of the minimal polynomial of µ.

Algebraic numbers form an algebraically closed subfield of C denoted by A. Complex
numbers λ ∈ C\A are called transcendental . By A∗ = A\{0} we denote the multiplicative
group of non-zero algebraic numbers. For a positive integer r let A(r) ⊂ A be the set
of algebraic numbers of degree ≤ r and A∗(r) = A∗ ∩ A(r). Let also A(∞) = A and
A∗(∞) = A∗.

An algebraic number λ ∈ A is called an integer algebraic number if its minimal poly-
nomial has integer coefficients. The set AZ of integer algebraic numbers form a subring
in the field A of algebraic numbers. The multiplicative group of units (that is invertible
elements) of this ring is denoted by A∗

1. An algebraic number λ belongs to A∗
1 if and only

if the minimal polynomial P (z) =
∑d

i=0 aiz
i of λ has integer coefficients and |a0| = 1. For

a positive integer r let A∗(r) = A ∩ A(r) and A∗
Z = AZ ∩ C∗.
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For n ∈ N let n
√

1 = {z ∈ C : zn = 1} and ∞
√

1 =
⋃

n∈N
n
√

1 be the multiplicative
group of roots from the unit. According to a well-known Kronecher Theorem (see [?, 3.2],
Theorem 2 of [BoS, §II.3.4] or Remark in [Ro, p.49]) an algebraic integer is a root of 1 if
and only if all of its algebraically conjugates have absolute value 1.

1.2. Group Theory. Given a group G by e we denote the neutral element of G. For a
subset A of a group G let 〈A〉 denote the subgroup of G generated by A, n

√
A = {g ∈ A :

gn ∈ A} and ∞
√
A = {g ∈ G : gn ∈ A for some n ∈ N}. The subset ∞

√
e is called the

periodic part of the group G while elements of ∞
√
e are called periodic elements of G. A

group is periodic if it coincides with its periodic part. A group G is called torsion-free if
∞
√
e = {e}. In general, the periodic part needs not be a subgroup of a group. However,

for any abelian (more generally, nilpotent) group G the periodic part of G is a subgroup
of G, see [KM, 16.2.7].

A group G is defined to have finite rank r if every finitely generated subgroup of G is
generated by ≤ r elements. The smallest number r with this property is called the rank
of G and is denoted by r(G). For groups G which are not of finite rank we put r(G) = ∞.
Under a p-rank rp(G) of an abelian group G where p is a prime number we understand

the rank r(Gp) of the maximal p-subgroup Gp = {x ∈ G : xpk
= e for some k ∈ N} of G.

The free rank r0(G) of an abelian group G is equal to the rank r(G/ ∞
√
e) of the quotient

group of G by its periodic part.
We write H ≤ G (resp. H E G) if H is a (normal) subgroup of a group G. A subgroup

H ≤ G is characteristic in G if f(H) = H for each automorphism f of G.
A decreasing series G0 ≥ G1 ≥ . . . of subgroups of a group G is called subnormal (resp.

normal) if each group Gi+1 is normal in Gi (resp. normal in G).
For two subsets A,B of a group G let [A,B] = 〈[a, b] : a ∈ A, b ∈ B〉 be the commutator

group of the sets A,B, where [a, b] = aba−1b−1 is the commutant of elements a, b ∈ G.
Let G(0) = G and G(n+1) = [G(n), G(n)] for n ≥ 0. It is well known that for every n ≥ 0

the subgroup G(n), called the n-th commutator group of G, is characteristic in G. A group
G is defined to be solvable if G(s) = {e} for some s ∈ N. The smallest number s with
G(s) = {e} is called the solvability degree of G. The descreasing normal series G = G(0) D
G(1) D · · · D G(s) = {e} is called the commutator series of G while the quotient groups
G(k)/G(k+1), k < s, are referred to as factors of this series. Observe that these factors are
abelian groups. For a solvable group G the number h(G) =

∑
k∈N r0(G

(k−1)/G(k)) is called
the Hirsch rank of G. Under a polycyclic group we understand a solvable group whose
any subgroup is finitely generated; a metabelian group is a solvable group of solvability
degree ≤ 2. A group G is called locally solvable if any finitely generated subgroup of G is
solvable.

Following A.I. Malcev [Mal] (see also [Ku, §D.24.1]) under a solvable A1-group we
understand a solvable group G whose commutator series has factors of finite free rank.
Observe that each solvable group of finite rank is a solvable A1-group.

Next, let γ1G = G and γn+1G = [γnG,G] for n ≥ 0. It is well-known that each subgroup
γnG, n ≥ 0, is characteristic in G. A group G is called nilpotent if γnG = {e} for some
n ∈ N. A group G is called virtually nilpotent if G contains a nilpotent subgroup H of
finite index. The subgroup H always can be chosen to be normal, so virtually nilpotent
groups are referred to as nilpotent-by-finite groups. A group G is called abelian-by-cyclic
if G contains a normal abelian subgroup H with cyclic quotient G/H.

According to the Gromov Theorem [Gr], a finitely generated group G is virtually nilpo-
tent if and only if it has polynomial growth. A group G is defined to have polyno-
mial growth if for every finite subset A ⊂ G there is a real polynomial p(x) such that
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Card(An) ≤ p(n) for every n ∈ N; G is exponentially bounded if limn→∞
n
√

Card(An) = 1
for any finite subset A ⊂ G. Here An = {a1 · · · an : a1, . . . , an ∈ A} ⊂ G for A ⊂ G. A
group is said to have exponential growth if it is not exponentially bounded. Each group
containing a free semigroup with two generators has exponential growth. For solvable
groups the converse is also true, see [Ro].

A group G is the semidirect product HoK of a normal subgroupH ⊂ G and a subgroup
K ⊂ G if H ∩K = {e} and H ·K = G. If, in addition, ab = ba for any a ∈ H, b ∈ K,
then G is called the direct product of H and K and is denoted by G = H × K. For
a group G and a set A let GA

0 = {(ga)a∈A ∈ GA : the set {a ∈ A : ga 6= e} is finite}
be the direct product of A copies of the group G. Under the wreath product G o H of
two groups G,H we understand the product GH

0 ×H endowed with the group operation
((ga)a∈H , h) ∗ ((g′a)a∈H , h

′) = ((ga · g′ha)a∈H , hh
′), see [Sk, p.83].

Finally we remind some information concerning abelian groups (saying about such
groups we shall use the additive form for denoting the group operation).

A subset X of an abelian group G is linearly independent if for any pairwise distinct
elements x1, . . . , xk ∈ X and any integers n1, . . . , nk the equality

∑k
i=1 nixi = 0 holds if

and only if n1 = · · · = nk = 0. Under a basis of an abelian torsion-free group G we
understand any maximal linearly independent subset of G. Let us observe that the size
of any basis of G is equal to the (free) rank of G.

If X = {x1, . . . , xk} is a basis of an abelian torsion-free group of finite free rank k,

then each element x ∈ G can be uniquely written as x =
∑k

i=1 rixi for some rational
numbers r1, . . . , rk (called the coordinates of x in the basis x1, . . . , xk). Here the equality

x =
∑k

i=1 rixi is understood in the sense that mx =
∑k

i=1(mri)xi where m is an integer
such that mri is integer for all i ≤ k. If the basis {x1, . . . , xk} generates the group G, then
the coordinates r1, . . . , rk of any element x ∈ G are integer numbers. It is well-known that
each finitely-generated abelian torsion-free group admits a basis generating the group.

Let A : G → G be an automorphism of an abelian torsion-free group G. Under the
matrix of the automorphism A in a basis x1, . . . , xk of G we understand the k× k-matrix
M = (aij)

k
i,j=1 with rational coefficients such that A(xj) =

∑k
i=1 aijxi for every j ≤ k. If

the elements x1, . . . , xk generate the group G, then the matrix M has integer coefficients
as well as its inverse matrix M−1 (which is the matrix of the inverse automorphism A−1

of G). In this case det(M) = ±1 and the eigenvalues of the matrix M belong to the set
A∗

1 of units of the ring of integer algebraic numbers.
As usual, under an eigenvalue of a matrix M we understand a complex root λ of the

characteristic polynomial det(zE −M) of M where E stands for the identity matrix.
It is well-known that the characteristic polynomial det(zE −M) of the matrix M of

an automorphism A does not depend on the choice of the basis for G, so we can say
about the characteristic polynomial PA(z) of the automorphism A (which is equal to the
characteristic polynomial det(zE−M) of the matrix M of A in any basis of G). Observe
that the characteristic polynomial PA(z) of A has rational coefficients and has degree
equal to the free rank r0(G) of G. Moreover, if the group G is finitely generated, then
PA(z) has integer coefficients and the free member equal to ±1.

Let A : G → G be an automorphism of an arbitrary (not necessarily abelian) group
G. A subgroup H ⊂ G is called A-invariant if A(H) = H. A subgroup H of G is called
1A-generated if there is an element x ∈ H such that H = 〈An(x) : n ∈ Z〉.

Finally, let us remind some information concerning finitely presented groups. A group
G is finitely presented if it can be defined using a finite number of relations over a finite
set of generators, see [Sk, p.112]. According to [BiS] a torsion-free abelian-by-cyclic group
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G is finitely presented if and only if G is generated by elements t, a1, . . . , an such that (i)
a1, . . . , an is a basis of a torsion-free abelian normal subgroup A ⊂ G with cyclic quotient
G/A generated by the coset tA and (ii) the matrix M of the automorphism it : A → A,
ig : a 7→ tat−1, in the basis a1, . . . , an has integer entries. In this case G has a finite
presentation

〈t, a1, . . . , an | [ai, aj] = e, tait
−1 = φM(ai), i, j = 1, . . . , n〉

where φM(ai) is the word am1
1 · · · amn

n and the vector (m1, . . . ,mn) is the ith-column of the
matrix M .

2. Group automorphisms and their spectra

In this section we study the spectrum of a single automorphism A : G → G on a
group and reduce the problem of its description to calculating the roots of characteristic
polynomials of some induced automorphisms of abelian torsion-free groups of finite rank.

Let us remind that the spectrum σ(A) of an automorphism A : G → G of a group G
consists of all the eigenvalues of A. A complex number λ ∈ C is an eigenvalue of A if
there are an A-invariant subgroup H ⊂ G and a non-trivial homomorphism ϕ : H → C
into the additive group of complex numbers such that ϕ ◦ A(x) = λ · ϕ(x) for all x ∈ H.

At first we remark an obvious interplay between the spectrum of an automorphism
A : G → G and the spectra of some induced automorphisms. Given an A-invariant
subgroup H of G and a normal A-invariant subgroup N of H let AH = A|H : H → H be
the restriction of A onto H and AH/N : H/N → H/N be a unique automorphism of the
quotient group H/N such that π ◦ AH = AH/N ◦ π where π : H → H/N stands for the
quotient homomorphism.

Proposition 2.1. Suppose A : G → G is an automorphism of a group G, H is an A-
invariant subgroup of G and N is a normal A-invariant subgroup of H. Then σ(AH/N) ⊂
σ(AH) ⊂ σ(A) ⊂ C∗.

Proof. If λ ∈ σ(A), then there is an A-invariant subgroup K ⊂ G and a non-trivial
homomorphism ϕ : K → C such that ϕ ◦ A|K = λ · ϕ. Take any point y ∈ K with
ϕ(y) 6= 0 and find x ∈ K such that y = A(x) (such a point x exists since AK is an
automorphism of K). Then 0 6= ϕ(y) = ϕ ◦A(x) = λ ·ϕ(x) which yields λ 6= 0 and hence
σ(A) ⊂ C∗.

Given λ ∈ σ(AH), find an AH-invariant subgroup K ⊂ H and a nontrivial homomor-
phism ϕ : K → C such that ϕ ◦ AH |K = λ · ϕ. Then ϕ ◦ A|K = λ · ϕ which means that
λ ∈ σ(A) and hence σ(AH) ⊂ σ(A).

To prove that σ(AH/N) ⊂ σ(AH), fix any λ ∈ σ(AH/N) and find an AH/N -invariant
subgroup K ⊂ H/N and a nontrivial homomorphism ϕ : K → C such that ϕ◦AH/N |K =
λ · ϕ. Denote by π : H → H/N the quotient homomorphism and consider the subgroup
L = π−1(K) ⊂ H and the non-trivial homomorphism ψ = ϕ ◦ π|L : L → C . Then
ψ◦AH |L = ϕ◦π◦AH |L = ϕ◦AH/N ◦π|L = λ ·ϕ◦π|L = λ ·ψ which yields λ ∈ σ(AH). �

Now let us consider automorphisms of abelian torsion-free groups.

Theorem 2.2. Let A : G→ G be an automorphism of an abelian torsion-free group G.

(1) If G has finite free rank r, then the spectrum σ(A) of A consists of the roots of
the characteristic polynomial PA(z) of A. Consequently, Card(σ(A)) ≤ r and
σ(A) ⊂ A∗(r).

(2) σ(A) = ∪{σ(AH) : H is a 1A-generated subgroup of G}.
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(3) σ(A) ⊂ A∗ if and only if σ(A) 6= C∗ if and only if each 1A-generated subgroup of
G has finite free rank.

(4) σ(A) ⊂ A∗
1 if and only if each 1A-generated subgroup of G is finitely generated.

(5) σ(An) = {λn : λ ∈ σ(A)} for any n ∈ Z.

Proof. (1) Suppose that G has a finite free rank r and let M = (aij)
r
i,j=1 be the matrix

of the automorphism A in a basis x1, . . . , xr of G. Then PA(z) = det(zE − M) =
det(zE −M∗), where PA(z) stands for the characteristic polynomial of A and M∗ for the
transposed matrix to M . If λ is a root of PA(z), then λ is an eigenvalue of the matrix M∗.
Consequently, there is an eigenvector ~c = (c1, . . . , cr) ∈ Ck of M∗ corresponding to λ.
The latter means that ~c is a non-zero vector such that M∗~c = λ~c, i.e.,

∑r
i=1 aijci = λcj for

every j ≤ r. Let ϕ : G→ C be a unique homomorphism of G into C such that ϕ(xi) = ci
for i ≤ r. This homomorphism is not trivial since ϕ(G) ⊃ {c1, . . . , cr} 6= {0}.

Then for each element x ∈ G with the coordinates q1, . . . , qr in the basis x1, . . . , xr we
have ϕ ◦ A(x) = ϕ ◦ A(

∑r
j=1 qjxj) =

∑r
j=1 qj · ϕ ◦ A(xj) =

∑r
j=1 qj · ϕ(

∑r
i=1 aijxi) =∑r

j=1 qj(
∑r

i=1 aijϕ(xi)) =
∑r

j=1 qj(
∑r

i=1 aijci) = λ ·
∑r

j=1 qjcj = λ ·
∑r

j=1 qjϕ(xj) = λ ·
ϕ(

∑r
j=1 qjxj) = λ · ϕ(x). This means that λ is an eigenvalue of the automorphism A.

Assume conversely, that λ is an eigenvalue of the automorphism A. This means that
for some A-invariant subgroup H ⊂ G and a non-trivial homomorphism ϕ : H → C we
have ϕ ◦ A(x) = λ · ϕ(x) for all x ∈ H. Pick any basis x1, . . . , xr for the group G so that
for some k ≤ r the elements x1, . . . , xk form a basis of the subgroup H. Let M = (aij)

r
i,j=1

be the matrix of the automorphism A in the basis x1, . . . , xr. Since A(H) = H, we get
that aij = 0 for any i, j ∈ {1, . . . , r} with j ≤ k < i. Then N = (aij)

k
i,j=1 is the matrix of

the automorphism A|H of the group H in the basis x1, . . . , xk. Let ~c = (c1, . . . , ck) ∈ Ck

be the vector with coordinates ci = ϕ(xi) for i ≤ k. Note that for every i ∈ {1, . . . , k}
we have

∑k
i=1 aijci =

∑k
i=1 aijϕ(xi) = ϕ(

∑k
i=1 aijxi) = ϕ ◦ A(xj) = λϕ(xj) = λ · cj. In

the matrix form this means that N∗~c = λ~c, i.e., λ is the eigenvalue of the transposed
matrix N∗ to the matrix N . This yields that λ is a root of the characteristic polynomial
PA|H(z) = det(zE−N∗) = det(zE−N) of the matrices N and N∗. Since N is a submatrix
of the matrix M and aij = 0 for any j ≤ k < i, we get that the characteristic polynomial
det(zE − N) of the matrix N divides the characteristic polynomial det(zE −M) of M .
This yields that det(λE −M) = 0 and thus λ is a root of the characteristic polynomial
PA(z) = det(zE −M) of the automorphism A.

(2) It follows from Proposition 2.1 that σ(AH) ⊂ σ(A) for any A-invariant subgroup H
of G. Hence, to prove the second statement of Theorem 2.2 it suffices for each eigenvalue of
A to find a 1A-generated subgroupH ⊂ G with λ ∈ σ(AH). Given an eigenvalue λ ∈ σ(A),
find an A-invariant subgroup K ⊂ G and a nontrivial homomorphism ϕ : K → C such
that ϕ ◦ A(x) = λ · ϕ(x) for all x ∈ K. Fix any x0 ∈ K with ϕ(x0) 6= 0 and consider
the 1A-generated subgroup H = 〈An(x0) : n ∈ Z〉 of K. It is clear that H is an A-
invariant subgroup of G and ϕ|H : H → C is a nontrivial homomorphism such that
ϕ◦A(x) = λ·ϕ(x) for any x ∈ H. This means that λ is an eigenvalue of the automorphism
AH : H → H.

(3) It follows from the previous two statements that σ(A) ⊂ A∗ and thus σ(A) 6= C∗

provided each 1A-generated subgroup of G has finite free rank. It rests to show that
σ(A) = C∗ provided G contains a 1A-generated subgroup H = 〈An(x) : n ∈ Z〉 of
infinite free rank. It follows that the system An(x), n ∈ Z, of generators of H is linearly
independent (otherwise the group H would have finite rank). Consequently, for each non-
zero complex number λ ∈ C∗ we can define a non-trivial homomorphism ϕ : H → C
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letting ϕ(An(x)) = λn for n ∈ Z. It can be easily shown that ϕ ◦A(y) = λ · ϕ(y) for each
y ∈ H. This yields that λ ∈ σ(A) and hence σ(A) = C∗.

(4) Assume that each 1A-generated subgroup of G is finitely generated and fix any
λ ∈ σ(A). Find an A-invariant subgroup H ⊂ G and a non-trivial homomorphism
ϕ : H → C such that ϕ ◦ A|H = λ · ϕ. Without loss of generality, the subgroup H is
1A-generated and thus finitely generated. Then H, being an abelian finitely generated
torsion-free group, admits a basis x1, . . . , xr generating H. The matrix M of A in the basis
x1, . . . , xr is an invertible element in the ring of r × r-matrices with integer coefficients.
Consequently, det(M) = ±1 and the characteristic polynomial det(zE −M) =

∑r
i=0 aiz

i

of M has integer coefficients with |a0| = ar = 1. By (1), the eigenvalue λ is a root of this
characteristic polynomial, which means that λ ∈ A∗

1.
Now assume conversely, that G contains a 1A-generated subgroup H = 〈An(x) : n ∈ Z〉

which is not finitely-generated. We have to verify that σ(A) 6⊂ A∗
1. If the group H has

infinite free rank, then σ(A) = C∗ 6⊂ A∗
1 and we are done. So assume that the group H

has finite free rank r.
We claim that σ(AH) 6⊂ A∗

1. Assuming the converse and applying the statement (1) of
this theorem, we get that the roots of the characteristic polynomial of the automorphism
AH belong to the set A∗

1. We can think of H as a subgroup of the linear r-dimensional
complex space Cr such that the automorphism AH extends to a linear automorphism B of
Cr. We can assume that the matrix of the automorphism B has a normal Jordan form and
thus the space Cr is decomposed into the direct sum Cr = Cr1 ⊕ · · · ⊕Crl of B-invariant
linear subspaces corresponding to the Jordan cells. Let pri : Cr → Cri , i ≤ l, denote
the natural projections. Since the group H ⊂ Cr is infinitely generated, the projection
Hs = prs(H) ⊂ Crs is infinitely generated for some s ≤ l. Observe that the subgroup Hs

is 1B-generated: it is generated by the vectors Bn(y), n ∈ Z, where y = prs(x). Since the
matrix of the automorphism B|Crs is a Jordan cell, B|Crs = λ · E + N where λ ∈ A∗

1

is the eigenvalue of B|Crs , E is the identity operator on Crs and N : Crs → Crs is a
nilpotent linear operator, which means that N rs = 0.

Analogously, B−1|Crs = 1
λ
E + Ñ where Ñ is another nilpotent linear operator on Crs .

It follows from λ ∈ A∗
1 that the complex numbers λ0, . . . , λd−1, where d is the degree of

the algebraic number λ, generate the group 〈λn : n ∈ Z〉 ⊂ C . Then the group Hs lies
in the finitely generated subgroup 〈λi · y,N j(y), Ñ j(y) : 0 ≤ i < d, 0 < j < rs〉 of Crs .
Consequently, Hs is finitely generated, which is a contradiction.

(5) Finally, given any n ∈ Z, we prove the equality σ(An) = σ(A)n were σ(A)n = {λn :
λ ∈ σ(A)}. In fact, the inclusion σ(An) ⊃ σ(A)n is easy: take any λ ∈ σ(A) and find
an A-invariant subgroup H ⊂ G and a non-trivial homomorphism ϕ : H → C such that
ϕ ◦ A(x) = λ · ϕ(x) for any x ∈ H. In particular, for any y ∈ H and x = A−1(y) we get
ϕ(y) = ϕ ◦ A ◦ A−1(y) = λ ◦ ϕ ◦ A−1(y) and thus ϕ ◦ A−1(y) = λ−1 · ϕ(y) for any y ∈ H.
By induction, it can be shown that ϕ ◦ An(x) = λn · ϕ(x) for every n ∈ Z and x ∈ H.
Thus λn ∈ σ(An) for any n ∈ Z.

To prove the inclusion σ(An) ⊂ σ(A)n, fix any λ ∈ σ(An) and using the statement (2) of
this theorem, find a 1An

-generated subgroupH ⊂ G with λ ∈ σ(An
H). WriteH = 〈Ani(x) :

i ∈ Z〉 for some x ∈ G and consider the 1A-generated subgroup H̄ = 〈Ai(x) : i ∈ Z〉. If
the group H̄ has infinite free rank, then by the third statement, σ(A) = C∗ and hence
λ ∈ σ(A)n = C∗. So we assume that H̄ has finite free rank r. Let x1, . . . , xr by any
basis for the group H̄ and let M be the matrix of the automorphism AH̄ in the basis
x1, . . . , xr. Since Mn is the matrix of the automorphism An

H̄
in the basis x1, . . . , xr, we
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conclude that σ(AH̄)n = σ(An
H̄

). Then λ ∈ σ(An
H) ⊂ σ(An

H̄
) = σ(AH̄)n ⊂ σ(A)n and

hence σ(An) ⊂ σ(A)n. �

Next, we study the spectrum of an automorphism of an arbitrary abelian group. We
remind that ∞

√
e stands for the periodic part of a group G. It is known that for an abelian

group G the periodic part ∞
√
e of G is a characteristic subgroup in G. Observe that the

quotient group G/∞
√
e is abelian and torsion-free. Moreover, r0(G/∞

√
e) = r0(G).

Given an automorphism A : G → G of G let AG/∞
√

e : G/∞
√
e → G/∞

√
e denote the

induced automorphism of the quotient group G/∞
√
e such that AG/∞

√
e ◦ π = π ◦ A where

π : G→ G/∞
√
e is the quotient homomorphism.

Under the characteristic polynomial PA(z) of an automorphism A : G → G of an
abelian group G of finite free rank we shall understand the characteristic polynomial of
the automorphism AG/∞

√
e of the abelian torsion-free group G/∞

√
e (which has rational

coefficients and has degree equal to the free rank r0(G) of G).
Given a homomorphism ϕ : G→ C , observe that ∞

√
e ⊂ Ker(ϕ) and thus ϕ = ψ ◦π for

some homomorphism ψ : G/∞
√
e → C . This simple observation allows us to reduce the

study of the spectrum of an automorphism A : G→ G of an abelian group G to studying
the spectrum of the automorphism hG/∞

√
e : G/∞

√
e → G/∞

√
e of the torsion-free abelian

group G/∞
√
e. More precisely, the following corollary of Theorem 2.2 holds.

Corollary 2.3. Let A : G → G be an automorphism of an abelian group G, ∞
√
e be the

periodic part of G and AG/∞
√

e : G/∞
√
e → G/∞

√
e be the induced automorphism of the

quotient torsion-free group G/∞
√
e. Then

(1) σ(A) = σ(AG/∞
√

e).
(2) If G has finite free rank r, then the spectrum σ(A) of A consists of the roots

of the characteristic polynomial PA(z) of A which yields Card(σ(A)) ≤ r and
σ(A) ⊂ A∗(r).

(3) σ(A) = ∪{σ(AH) : H is a 1A-generated subgroup of G}.
(4) σ(A) ⊂ A∗ if and only if σ(A) 6= C∗ if and only if each 1A-generated subgroup of

G has finite free rank.
(5) σ(A) ⊂ A∗

1 if and only if for each 1A-generated subgroup H of G the group H/∞
√
e

is finitely generated.
(6) σ(An) = {λn : λ ∈ σ(A)} for any n ∈ Z.

Using Corollary 2.3 we are able to describe the spectrum of an automorphism of arbi-
trary group.

Theorem 2.4. Let A : G→ G be an automorphism of a group G. Then

(1) σ(A) = ∪{σ(AH/H(1)) : H is a 1A-generated subgroup of G};
(2) σ(A) ⊂ A∗ if and only if σ(A) 6= C∗ if and only if for each 1A-generated subgroup

H ⊂ G the abelian group H/H(1) has finite free rank;
(3) σ(A) ⊂ A∗

1 if and only if for each 1A-generated subgroup H of G the group

H/
∞
√
H(1) is finitely generated;

(4) σ(A) ⊂ A∗
1 if each subgroup of G is finitely generated;

(5) σ(An) ⊃ {λn : λ ∈ σ(A)} for every n ∈ Z.

Proof. (1) It follows from Proposition 2.1 that σ(A) ⊃ ∪{σ(AH/H(1)) : H is a 1A-generated
subgroup of G}. To prove the inverse inclusion, assume that λ ∈ σ(A) and find an A-
invariant subgroup H ⊂ G and a non-trivial homomorphism ϕ : H → C with ϕ ◦ A|H =
λ ·ϕ. Fix any x ∈ H with ϕ(x) 6= 0. Without loss of generality, H = 〈An(x) : n ∈ Z〉 and
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hence H is 1A-generated. Since C is abelian, the kernel Ker(ϕ) = {y ∈ H : ϕ(y) = 0} of
ϕ contains the commutator subgroup H(1) of H. Consequently, there is a homomorphism
ψ : H/H(1) → C such that ϕ = ψ ◦ π where π : H → H/H(1) stands for the quotient
homomorphism. By AH/H(1) : H/H(1) → H/H(1) we denote the automorphism of the

quotient group H/H(1) induced by the automorphism A (let us note that the subgroup
H(1), being characteristic in H, is A-invariant). Then ϕ◦A|H = λ·ϕ implies ψ◦AH/H(1) =
λ · ψ which means that λ ∈ σ(AH/H(1)).

Two next statements of Theorem 2.4 follows from the first statement of this theorem
and the corresponding statements of Corollary 2.3. The forth statement of Theorem 2.4
follows from the third one, while the final fifth statement can be proven by the argument
of Theorem 2.2(5). �

Next, we show that the spectrum of an automorphism A of a solvable group G is
determined by the action of A on the factors G(k)/G(k+1) of the commutator series of G.

Theorem 2.5. Suppose A : G → G is an automorphism of a group G and {e} = G0 ⊂
G1 ⊂ · · · ⊂ Gα = G is an increasing transfinite sequence of A-invariant subgroups of G
such that Gγ =

⋃
β<γ Gβ if γ ≤ α is a limit ordinal and Gβ is a normal subgroup of Gβ+1

for any ordinal β < α. Then

(1) σ(A) =
⋃

β<α σ(AGβ+1/Gβ
).

(2) If σ(G) 6= C∗ and the factors Gβ+1/Gβ are abelian for each β < α, then
Card(σ(A)) ≤

∑
β<α

r0(Gβ+1/Gβ) and σ(A) ⊂ A∗(r) where r = sup
β<α

r0(Gβ+1/Gβ).

(3) If for every ordinal β < α the factor Gβ+1/Gβ is abelian and the group Gβ+1/∞
√
Gβ

is finitely generated, then σ(A) ⊂ A∗
1.

Proof. The inclusion σ(A) ⊃
⋃

β<α σ(AGβ+1/Gβ
) follows from Proposition 2.1. To prove the

reverse inclusion, fix any λ ∈ σ(A) and find an A-invariant subgroup H ⊂ G and a non-
trivial homomorphism ϕ : H → C with ϕ◦A|H = λ·ϕ. Let Ker(ϕ) = {x ∈ H : ϕ(x) = 0}
and let β ≤ α be the smallest ordinal such that H ∩Gβ 6⊂ Ker(ϕ). It follows that β is not
limit, i.e., β = γ+1 for some ordinal γ withH∩Gγ ⊂ Ker(ϕ). Let π : Gγ+1 → Gγ+1/Gγ be
the quotient homomorphism and AGγ+1/Gγ : Gγ+1/Gγ → Gγ+1/Gγ be the homomorphism
induced by AGγ+1 (that is, AGγ+1/Gγ ◦π = π◦AGγ+1). Fix any point x ∈ (H∩Gβ)\Ker(ϕ)
and consider the 1A-generated subgroup Hx = 〈An(x) : n ∈ Z〉 ⊂ H ∩Gγ+1 and its image
π(Hx) ⊂ Gγ+1/Gγ. Since Hx ∩ Gγ ⊂ Ker(ϕ), there is a homomorphism ψ : π(Hx) → C
such that ψ ◦ π|Hx = ϕ|Hx.

We claim that ψ ◦AGγ+1/Gγ |π(Hx) = λ ·ψ. Indeed, take any y ∈ π(Hx) and find z ∈ Hx

with π(z) = y. Then ψ ◦ AGγ+1/Gγ (y) = ψ ◦ AGγ+1/Gγ ◦ π(z) = ψ ◦ π ◦ A(z) = ϕ ◦ A(z) =
λ · ϕ(z) = λ · ψ ◦ π(z) = λ · ψ(y).

(2) Suppose that σ(A) 6= C∗ and the factors Gβ+1/Gβ are abelian for all ordinals
β < α. Let r = supβ<α r0(Gβ+1/Gβ). Fix arbitrary ordinal β < α. By the first state-
ment of this theorem, σ(AGβ+1/Gβ

) 6= C∗. Applying Corollary 2.3(2), we conclude that

Card
(
σ(AGβ+1/Gβ

)
)
≤ r0(Gβ+1/Gβ) and σ(AGβ+1/Gβ

) ⊂ A∗(r0(Gβ+1/Gβ)) ⊂ A∗(r).

Then σ(A) =
⋃

β<α σ(AGβ+1/Gβ
) ⊂ A∗(r) and Card(σ(A)) = Card

( ⋃
β<α σ(AGβ+1/Gβ

)
)
≤∑

β<α Card(σ(AGβ+1/Gβ
)) ≤

∑
β<α r0(Gβ+1/Gβ).

(3) Assume that for each ordinal β < α the factor Gβ+1/Gβ is abelian and the group
Gβ+1/ ∞

√
Gβ is finitely generated. It follows from Corollary 2.3(5) that σ(AGβ+1/Gβ

) ⊂ A∗
1

for each β < α and thus σ(A) =
⋃

β<α σ(AGβ+1/Gβ
) ⊂ A∗

1. �
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Corollary 2.6. If A : G → G is an automorphism of a group G and H is a normal
A-invariant subgroup of G, then σ(A) = σ(AH) ∪ σ(AG/H).

Under the characteristic polynomial of an automorphism A : G → G of a solvable A1-
group G we understand the product PA(z) =

∏s
k=1 Pk(z), where s is the solvability degree

of G and Pk(z) is the characteristic polynomial of the induced automorphism AG(k−1)/G(k)

of the abelian group G(k−1)/G(k) for k ≤ s. Observe that the characteristic polynomial
PA(z) has rational coefficients and degree equal to the Hirsch rank of G. Moreover, if the
group G is polycyclic, then PA(z) has integer coefficients and the free member equal to
±1.

Corollary 2.7. Let A : G→ G be an automorphism of a solvable group G. Then

(1) σ(A) =
⋃∞

k=0 σ(AG(k)/G(k+1)).
(2) If G is a solvable A1-group, then σ(A) consists of roots of the characteristic poly-

nomial PA(z) of A. Consequently, Card(σ(A)) ≤ h(G) and σ(A) ⊂ A∗(r) where
r = supk≥0 r0(G

(k)/G(k+1)).

(3) If for every k ≥ 0 the group G(k)/
∞
√
G(k+1) is finitely generated, then σ(A) ⊂ A∗

1.
(4) σ(A) ⊂ A∗

1 if G is a polycyclic group.

3. The spectrum of a group

For an element g of a group G let ig : G → G, ig : x 7→ gxg−1, denote the inner
automorphism generated by the element g. We recall the definition of our principal
concept in this paper – the spectrum σ(G) of a group G.

Definition 1. The spectrum of a group G is the subset σ(G) =
⋃

g∈G σ(ig) of the complex
plane C consisting of the eigenvalues of all inner automorphisms of G.

The spectrum of a groupG carries a non-trivial information only in the non-commutative
case: for any abelian group G we get σ(G) ⊂ {1}. As we shall see later the same is true
for a much wider class of all periodically Engelian groups.

We remind that a group G is Engelian if for any elements a, b ∈ G there is n ∈ N
such that [a, nb] = e where the multiple commutators [a, nb] are defined inductively:
[a, 1b] = [a, b] and [a, (k+1)b] = [[a, kb], b] for k ≥ 1. It is known that the class of Engelian
groups contains all nilpotent groups while latter class contains all abelian groups, see [Ku,
§D.26].

We define a group G to be periodically Engelian if for any elements a, b ∈ G there
is a finite sequence n1, . . . , nk ∈ N such that ak+1 = e where the elements a0, . . . , ak+1

are defined recursively: a0 = e and ai+1 = [ai, b]
ni for i ≤ k. Observe that the class of

periodically Engelian groups contains all Engelian groups and all periodic groups.
The following theorem describes elementary properties of group spectra.

Theorem 3.1. Let G be a group. Then

(1) σ(G) ⊂ C∗;
(2) σ(G) = ∅ if and only if 1 /∈ σ(G) if and only if G is periodic;
(3) σ(G) ⊂ {1} if G is periodically Engelian;
(4) σ(H) ⊂ σ(G) for any subgroup H of G;
(5) σ(G) =

⋃
{σ(H) : H is a 2-generated subgroup of G};

(6) σ(G) = σ(G/H) ∪
⋃

g∈G σ(igH) for any normal subgroup H of G;

(7) σ(G) = σ(K) ∪
⋃

g∈K σ(igH) if G = H o K is the semidirect product of a normal
abelian subgroup H ⊂ G and a subgroup K ⊂ G;
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(8) σ(G) = σ(H) ∪ σ(K) if G = H ×K is the direct product of subgroups H,K ⊂ G;

(9) σ(G) ⊂
[G:H]⋃
k=1

k
√
σ(H) for any subgroup H of finite index [G : H] in G;

(10) σ(G) ⊂ A∗
1 if G is a polycyclic group.

(11) If G is a solvable A1-group, then σ(G) ⊂ A∗(r) where r = supk∈N r0(G
(k−1)/G(k)).

Proof. (1) The inclusion σ(G) ⊂ C∗ follows from Proposition 2.1.
(2) If G periodic, then any homomorphism ϕ : H → C from any subgroup H of G is

trivial. This yields σ(G) = ∅. Now assume that G is not periodic. Then G contains an
infinite cyclic subgroup H = 〈g〉 generated by some element g ∈ G. Let ϕ : H → C be the
homomorphism such that ϕ(g) = 1. Then the restriction ig|〈g〉 of the inner automorphism
ig onto 〈g〉 is the identity automorphism with ϕ ◦ ig|〈g〉 = 1 · ϕ, i.e., 1 ∈ σ(ig) ⊂ σ(G).

(3) Suppose the group G is periodically Engelian, but σ(G) contains a complex number
λ 6= 1. Then there are an element g ∈ G, a subgroup H ⊂ G with gHg−1 = H, and
a non-trivial homomorphism ϕ : H → C such that ϕ(gxg−1) = λ · ϕ(x) for all x ∈ H.
Fix any point x0 ∈ H with ϕ(x0) 6= 0. Since G is periodically Engelian, there is a
finite number sequence n1, . . . , nk ∈ N such that xk+1 = e where xi+1 = [xi, g

−1]ni for
i ≤ k. Observe that for every i ≤ k we get ϕ(xi+1) = ϕ([xi, g

−1]ni) = niϕ(xig
−1x−1

i g) =
ni(ϕ(xi)− ϕ(gxig

−1)) = ni(ϕ(xi)− λϕ(xi)) = ni(1− λ)ϕ(xi). Since ϕ(xk+1) = ϕ(e) = 0,
by finite induction, we get ϕ(x0) = 0, which is a contradiction.

(4) The inclusion σ(H) ⊂ σ(G) for any subgroup H of G follows from Proposition 2.1.
(5) The inclusion σ(G) ⊃

⋃
{σ(H) : H is a 2-generated subgroup of G} follows from

the previous item. To prove the inverse inclusion, fix any eigenvalue λ ∈ σ(G) and find
an element g ∈ G, a subgroup K ⊂ G with gKg−1 = K and a non-trivial homomorphism
ϕ : H → C such that ϕ(gxg−1) = λϕ(x) for each x ∈ K. Fix any element x ∈ K with
ϕ(x) 6= 0 and consider the 2-generated subgroup H = 〈x, g〉 ⊂ G. Let L = K ∩ H. It
follows that gLg−1 = L and ϕ(gyg−1) = λϕ(y) for each y ∈ L. This means that λ ∈ σ(H).

(6) Suppose H is a normal subgroup of G. The inclusion σ(G) ⊃ σ(G/H)∪
⋃

g∈G σ(igH)

follows from Proposition 2.1. To prove the inverse inclusion, fix any eigenvalue λ ∈ σ(G)
and find an element g ∈ G with λ ∈ σ(ig). According to Corollary 2.6, λ ∈ σ(ig) =

σ(igH) ∪ σ(igG/H) = σ(igH) ∪ σ(igH
G/H) ⊂ σ(igH) ∪ σ(G/H).

(7) Suppose G = HoK is the semidirect product of a normal abelian subgroup H ⊂ G
and a subgroup K ⊂ G. It follows that the quotient group G/H is isomorphic to K
and thus σ(G/H) = σ(K). Observe that each element g ∈ G can be uniquely written
as g = kh for some k ∈ K and h ∈ H. Then for each x ∈ H we get igH(x) = gxg−1 =
khxh−1k−1 = kxk−1 = ikH(x). By the preceding item, σ(K) ∪

⋃
g∈K σ(igH) ⊂ σ(G) =

σ(G/H)∪
⋃

g∈G σ(igH) = σ(K)∪
⋃

g∈K σ(igH) which just yields σ(G) = σ(K)∪
⋃

g∈K σ(igH).

(8) Suppose G = H ×K is a direct product of normal subgroups H and K. Note that
for any element g = hk = kh where k ∈ K, h ∈ H we get igH = ihH . Then by the item (6),
we get σ(G) = σ(G/H) ∪

⋃
g∈G σ(igH) = σ(K) ∪

⋃
h∈H σ(ihH) = σ(K) ∪ σ(H).

(9) Let H be a subgroup of finite index [G : H] in G. Fix any eigenvalue λ ∈ σ(G)
and find an element g ∈ G, a subgroup K ⊂ G with gKg−1 = K, and a non-trivial
homomorphism ϕ : K → C such that ϕ(gxg−1) = λϕ(x) for each x ∈ K. Fix any x ∈ K
with ϕ(x) 6= 0. It follows that gr, xq ∈ H for some 1 ≤ r, q ≤ [G : H]. Let a = gr and
y = xq and consider the subgroup L = 〈anya−n : n ∈ Z〉 ⊂ K ∩ H. It is easy to verify
that aLa−1 = L, ϕ(y) = qϕ(x) 6= 0 and ϕ(aza−1) = ϕ(grzg−r) = λrϕ(z) for each z ∈ L.

This means that λr ∈ σ(H) and hence λ ∈ r
√
σ(H) ⊂

⋃[G:H]
k=1

k
√
σ(H).

(10,11) The last two statements of Theorem 3.1 follow from Corollary 2.7. �
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According to Theorem 3.1, σ(G) ⊂ {1} for any periodically Engelian group G. For
locally solvable groups the inverse statement is also true.

Theorem 3.2. A locally solvable group G is periodically Engelian if and only if σ(G) ⊂
{1}.

Proof. In light of Theorem 3.1(3) it suffices to prove that a locally solvable group G is
periodically Engelian provided σ(G) ⊂ {1}. For this we need an auxiliary result.

We define an endomorphism A : G → G of an abelian group G to be periodically
nilpotent if for any x ∈ G there is n ∈ N such that the element An(x) is periodic.

Claim. For any automorphism A : G → G of an abelian group G with σ(A) ⊂ {1} the
endomorphism A− Id : x 7→ A(x)− x of G is periodically nilpotent.

Proof. Fix an arbitrary x ∈ G. Since σ(A) ⊂ {1} ⊂ A∗, the 1A-generated subgroup
H = 〈An(x) : n ∈ Z〉 of G has finite free rank r, see Corolary 2.3(4). Let P be the
periodic part of H and b1, . . . , br be a basis of the torsion-free group H/P . Let M be the
matrix of the automorphism AH/P in the basis b1, . . . , br. Since σ(AH/P ) ⊂ σ(A) ⊂ {1},
all the eigenvalues of the matrix M are equal to 1. This implies that the matrix M− Id of
the endomorphism (A− Id)H/P is nilpotent in the sense that (M − Id)r = 0. This yields
that (A − Id)r(x) ∈ P which just means that the endomorphism A − Id is periodically
nilpotent. �

Now we are able to finish the proof of the theorem. Fix any elements x0, g ∈ G. Without
loss of generality we can assume that the group G is generated by x0 and g and thus is
solvable. Consider the commutator series G = G(0) D G(1) D · · · D G(s+1) = {e} of G
and the automorphisms hk = ig

G(k−1)/G(k) of the abelian groups G(k−1)/G(k) induced by the

inner automorphism ig : x 7→ gxg−1 of G. Since σ(hk) ⊂ σ(ig) ⊂ σ(G) ⊂ {1}, it is legal
to apply the above Claim to conclude that for every k ≤ s+ 1 the endomorphism Id− hk

of the group G(k−1)/G(k) is periodically nilpotent. This allows us to construct inductively
two sequences m1, . . . ,ms and p1, . . . , ps of positive integers such that xs+1 = e where
xk+1 = [xk,mkg]

pk for 0 ≤ k ≤ s. Let l = s +
∑s

i=1mi and define a number sequence

n1, . . . , nl letting ni = pj if i = j+
∑j

k=1mk for some j ≤ s and ni = 1 otherwise. Observe
that yl+1 = xs+1 = e where y0 = x0 and yk+1 = [yk, g]

nk for 0 ≤ k ≤ l. This means that
the group G is periodically Engelian. �

Next, we consider some group properties which can be characterized by the spectrum.

Theorem 3.3. Let G be a finitely-generated solvable group such that for every k ≥ 0 the
the factor G(k)/G(k+1) has finite p-rank for every prime p. Then

(1) σ(G) ⊂ A∗ if G has finite rank.
(2) σ(G) ⊂ A∗

1 if and only if G is polycyclic;
(3) σ(G) ⊂ ∞

√
1 if and only if G is virtually nilpotent if and only if G contains no free

semigroup with two generators;
(4) σ(G) ⊂ {1} if and only if G is periodically Engelian;
(5) σ(G) = ∅ if and only if G is finite;

Proof. (1) If G has finite rank, then for every k ≥ 0 the group G(k)/G(k+1) has finite free
rank and hence σ(G) ⊂ A∗ according to Theorem 3.1(11).

(2) If G is polycyclic, then σ(G) ⊂ A∗
1 according to Theorem 3.1(10). The proof of the

inverse statement will be done by induction on the solvability degree of G. To fulfill the
inductive step we need the following fact proven in [Ro, Lemma 4.10].
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Lemma 3.1. Let A be an abelian normal subgroup of a finitely generated group B with
polycyclic quotient B/A. If for any a ∈ A and b ∈ B the group 〈bnab−n : n ∈ Z〉 is finitely
generated, then the group B is polycyclic.

Now we are able to finish the proof of the second statement of Theorem 3.3. For abelian
groups (i.e., groups of solvability degree 1) this statement is trivial. Assume that it has
been proved for groups G whose solvability degree does not exceed some number s ≥ 1.
Suppose that the group G has the solvability degree s+1. Consider the commutator series
G = G(0) D G(1) D · · · D G(s+1) = {e} of G. Assuming that σ(G) ⊂ A∗

1 and applying
Corollary 2.3(5), we get that for any a ∈ G(s) and b ∈ G the quotient group H/T of the
subgroup H = 〈bnab−n : n ∈ Z〉 ⊂ G(s) by its periodic part T is finitely generated.

We claim that the group T is finite. Observe that H/T is a free abelian group of finite
rank. This implies that H is a direct product T × F of its periodic part T and some
subgroup F ⊂ H isomorphic to H/T . Write a = t · v where t ∈ T and v ∈ F . Let m be
the exponent of t (i.e., the minimal m such that tm = e). The periodic part T of H is
a characteristic subgroup of H which yields that bTb−1 = T . Moreover, it can be shown
that T = 〈bntb−n : n ∈ Z〉. Consequently, the subgroup T has finite exponent m. By
Prüfer-Baer Theorem (see [Fu, 17.2]), T is a direct product of cyclic groups. Taking into
account that T has finite exponent and the p-rank rp(T ) of T is finite for every prime p,
we conclude that the group T is finite. Then the group H = 〈bnab−n : n ∈ Z〉, being a
direct sum of a finite group T and a finitely generated group F , is finitely generated.

The quotient group G/G(s) has solvability rank ≤ s and satisfies σ(G/G(s)) ⊂ σ(G) ⊂
A∗

1 according to Theorem 3.1(6). Then the inductive hypothesis implies that the group
G/G(s) is polycyclic. Applying finally Lemma 3.1, we conclude that the group G is
polycyclic too.

(3) The second equivalence of the third statement follows from Theorems 4.7 and 4.12
of [Ro] (stating that a finitely generated solvable group is virtually nilpotent if and only
if it contains no free semigroup with two generators).

If the group G is virtually nilpotent, then by Theorem 3.1(3 and 9), σ(G) ⊂ n
√

1 for
some n ∈ N.

If, conversely, σ(G) ⊂ ∞
√

1, then G is polycyclic according to the previous item. Now
we can apply Theorem 4.12 of [Ro] or Proposition 4.2 of [Alp] (asserting that a polycyclic
group H with σ(H) ⊂ T is virtually nilpotent) to conclude that the group G is virtually
nilpotent.

(4) The fourth statement follows from Theorem 3.2.
(5) Finally, the last statement follows from Theorem 3.1(2) and the well-known fact

asserting that a periodic polycyclic group is finite. �

Remark 3.1. The restriction on the p-ranks of the factors of the commutator series
in Theorem 3.3 is essential. Indeed, given any positive integer p consider the wreath
product (Z/pZ) oZ. It is a 2-generated metabelian group which is not polycyclic. By [Ro]
it contains a free semigroup with two generators. On the other hand, by Theorem 3.1(6),
σ((Z/pZ) o Z) = σ(Z) = {1} which implies that the group (Z/pZ) o Z is periodically
Engelian.

Next, we study the algebraic structure of the spectrum σ(G) of a group G. Observe
that together with each complex number λ ∈ σ(G) (which is an eigenvalue of some inner
automorphism ig) the set σ(G) contains all its integer powers λn (which are eigenvalues
of the inner automorphisms ig

n
). This yields that σ(G) is a union of subgroups of C∗. In

some cases, σ(G) is a finite union of subgroups of C∗.



GROUP SPECTRA 15

We shall say that a group G has (finitely) splittable spectrum if σ(G) =
⋃

ϕ∈Φ ϕ(G) for

some (finite) family Φ of homomorphisms ϕ : G→ C∗ of G into the multiplicative group
C∗ of complex numbers.

Theorem 3.4. Each solvable A1-group G contains a subgroup H of finite index [G : H]
depending only on the ranks r0(G

(k)/G(k+1)), k ≥ 0, whose spectrum σ(H) is finitely
splittable. More precisely, σ(H) =

⋃
ϕ∈Φ ϕ(H) for some family Φ of homomorphisms

ϕ : H → C∗ of size Card(Φ) = h(G) such that for every g ∈ H the product
∏

ϕ∈Φ(z−ϕ(g))
coincides with the characteristic polynomial of the inner automorphism ig of H.

Proof. In the proof we shall use the Kolchinov-Malcev Theorem [KM, 21.1.5] concerning
the structure of solvable subgroups of the group GL(n,C) of invertible n × n-matrices
over the field C . This theorem states that each solvable subgroup of GL(n,C) contains
a triangulable subgroup of finite index depending only on n. A subgroup G ⊂ GL(n,C)
is triangulable if WGW−1 ⊂ T (n,C) for some W ∈ GL(n,C) where T (n,C) is the
subgroup of GL(n,C) consisting of upper-triangular matrices. Observe that the function
ϕi : T (n,C) → C∗, i ∈ {1, . . . , n}, assigning to an upper-triangular matrix A = (aij)

n
i,j=1

its i-th diagonal element aii is a group homomorphism. Moreover, for each A ∈ T (n,C)
the product

∏n
i=1(z − ϕi(A)) coincides with the characteristic polynomial of the matrix

A, which yields that {ϕi(A) : 1 ≤ i ≤ n} is the set of eigenvalues of the matrix A.
This observation implies that for a triangulable subgroup G ⊂ GL(n,C) with WGW−1 ⊂
T (n,C) there are homomorphisms ψ1, . . . , ψn : G → C∗ defined by ψi(A) = ϕi(WAW−1)
for A ∈ G, such that for each A ∈ G the product

∏n
i=1(z − ψi(A)) coincides with the

characteristic polynomial of A and {ψi(A) : 1 ≤ i ≤ n} with the set of eigenvalues of the
matrix A.

Given a solvable A1-group G, for every k ∈ N consider the abelian torsion-free group

G(k−1)/
∞
√
G(k) where

∞
√
G(k) = {x ∈ G(k−1) : xn ∈ G(k) for some n ∈ N}. Let

Aut
(
G(k−1)/

∞
√
G(k)

)
be the automorphism group of G(k−1)/

∞
√
G(k) and

πk : G → Aut
(
G(k−1)/

∞
√
G(k)

)
be the homomorphism assigning to each element g ∈ G

the automorphism ig
G(k−1)/

∞√
G(k)

of G(k−1)/
∞
√
G(k) induced by the inner automorphism

ig of G. Let nk = r0(G
(k−1)/G(k)). Fixing any basis in the abelian torsion-free group

G(k−1)/
∞
√
G(k) we identify the group Aut(G(k−1)/

∞
√
G(k)) with a subgroup of the matrix

group GL(nk,C). According to the Kolchinov-Malcev Theorem, the group πk(G), being
a solvable subgroup of GL(nk,C), contains a triangulable subgroup Hk ⊂ πk(G) of finite
index depending only on nk. The subgroup Hk ⊂ GL(nk,C), being triangulable, admits

homomorphisms ϕ
(k)
i : Hk → C∗ for i ∈ {1, . . . , nk} such that for each A ∈ Hk the

product
∏nk

i=1(z − ϕ
(k)
i (A)) coincides with the characteristic polynomial of A and hence

{ϕ(k)
i (A) : 1 ≤ k ≤ nk} coincides with the set of eigenvalues of the matrix A.
The subgroup H =

⋂∞
k=1 π

−1
k (Hk) has finite index in G (depending only on the indices

of Hk in πk(G)). Let Φ = {ϕ(k)
i ◦ πk|H : H → C∗ : k ≥ 0, 1 ≤ i ≤ nk} and observe

that Card(Φ) =
∑

k∈N nk = h(G). It follows from Corollary 2.7(2) that for any g ∈ H
the product

∏
ϕ∈Φ(z − ϕ(g)) coincides with the characteristic polynomial of the inner

automorphism igH of H and hence σ(igH) = {ϕ(igH) : ϕ ∈ Φ}. Consequently, σ(H) =⋃
ϕ∈Φ ϕ(H). �

4. The test groups Affλ(C)

In this section we introduce and study so-called test groups Affλ(C), λ ∈ C∗, which are
of crucial importance for determining the spectrum σ(G) of a group G. We shall show
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that a complex number λ ∈ C∗ belongs to the spectrum σ(G) if and only if the group
Affλ(C) is a quotient group of some subgroup of C .

As expected, Aff(C) is the group of affine transformations of C of the form w = az+ b
where a ∈ C∗ and b ∈ C . The group Aff(C) is isomorphic to the multiplicative matrix
group

{(
a b
0 1

)
: a ∈ C∗, b ∈ C

}
.

The group Aff(C) has the structure of the semi-direct product C o C∗ with the group
operation defined by (b, a) ∗ (b′, a′) = (b + ab′, aa′). The group C can be identified with
the normal subgroup T (C) = {(b, 1) ∈ Aff(C) : b ∈ C} consisting all translations of
C while C∗ is isomorphic to the subgroup GL(C) = {(0, a) : a ∈ C∗} consisting of
linear tranformations of C . By χ : Aff(C) → C∗, (b, a) 7→ a, we denote the natural
homomorphism whose kernel coincides with the subgroup T (C).

Observe that an element (0, λ) ∈ GL(C) ⊂ Aff(C) acts on the subgroup T (C) ⊂ Aff(C)
by conjugations as (0, λ)(b, 1)(0, λ)−1 = (λb, 1), i.e., as the linear operator multiplying each
b ∈ C by λ.

Given a complex number λ ∈ C∗ let Affλ(C) be the subgroup of Aff(C) generated
by two elements: (1, 1) ∈ T (C) and (0, λ) ∈ GL(C). Note that χ(Affλ(C)) = {λn :
n ∈ Z} ⊂ C∗ is a cyclic subgroup of C∗ while Tλ(C) = T (C) ∩ Affλ(C) is the additive
subgroup of T (C) ∼= C generated by the set {(λn, 1) : n ∈ Z}. Thus each element
(z, 1) ∈ Tλ(C) can be written as z =

∑n
i=−n ziλ

i for some n ∈ N and integers zi, |i| ≤ n.
Observe that the group Affλ(C) is a semi-direct product of Tλ(C) and the cyclic group
{(0, λn) : n ∈ Z} ⊂ GL(C). The algebraic structure of the group Affλ(C) depends
essentially on the arithmetic properties of the number λ.

Theorem 4.1. For a non-zero complex number λ the group Affλ(C) has the following
properties:

(1) Affλ(C) is metabelian (more precisely, abelian-by-cyclic).
(2) λ is an algebraic number of degree r if and only if the group Tλ(C) has the free

rank r.
(3) σ(Affλ(C)) = {zn : n ∈ Z, Pλ(z) = 0} if λ is an algebraic number with minimal

polynomial Pλ(z).
(4) The number λ is transcendental if and only if σ(Affλ(C)) = C∗ if and only if the

group Tλ(C) has infinite free rank if and only if Tλ(C) is a free abelian group of
infinite rank.

(5) λ ∈ A∗
1 if and only if the group Tλ(C) is finitely generated if and only if Affλ(C)

is polycyclic.
(6) λ ∈ ∞

√
1 if and only if σ(Affλ(C)) = k

√
1 for some k if and only if Affλ(C)

is virtually nilpotent if and only if Affλ(C) contains no free semigroup with two
generators.

(7) λ ∈ A∗
Z ∪ (A∗

Z)−1 if and only if the group Affλ(C) is finitely presented.

Proof. (1) The first statement of Theorem 4.1 is obvious and follows from the definition
of Affλ(C).

(2) To prove the second statement, assume that λ is an algebraic number of degree r.
It follows that the numbers 1, λ, . . . , λr−1 ∈ C are linearly independent over Q while λr is
a Q-linear combination of λ0, . . . , λr−1 and so does any power λn, n ∈ Z, Consequently,
the group Tλ(C) = 〈(λn, 1) : n ∈ Z〉 has free rank r.

Assume conversely that the group Tλ(C) has finite free rank r. Then the elements
(λ0, 1), . . . , (λr−1, 1) form a basis of the group Tλ(C) which implies that λ is an algebraic
number of degree r.
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(3) Now assume that λ is an algebraic number with the minimal polynomial Pλ(z) =∑d
i=0 aiz

i where ad = 1. By iλ : Affλ(C) → Affλ(C) we denote the inner automor-
phism generated by the element (0, λ) ∈ Affλ(C). For any (b, 1) ∈ Tλ(C) we get
iλ(b, 1) = (0, λ)(b, 1)(0, λ−1) = (λb, 1). It follows from the previous assertion that the
group Tλ(C) has finite free rank equal d and the elements (λ0, 1), . . . , (λd−1, 1) form a
basis for Tλ(C). For this basis we get iλ(λi, 1) = (λi+1, 1) if i < d − 1 and iλ(λd−1, 1) =

(−
∑d−1

i=0 aiλi, 1). Thus the matrix of the automorphism iλ|Tλ(C) in this basis has the
Frobenius normal form, while the characteristic polynomial of this automorphism is equal
to Pλ(z), see [War, §38]. By Theorem 2.2(1), σ(iλ|Tλ(C)) = {λ1, . . . , λd} where λ1, . . . , λd

are the roots of the polynomial Pλ(z). By Theorem 2.2(5) for every n ∈ Z, we get
σ(iλ

n|Tλ(C)) = {λn
1 , . . . , λ

n
d}. Applying Theorem 3.1(7), we conclude that σ(Affλ(C)) =

σ(Affλ(C)/Tλ(C)) ∪
⋃

n∈Z σ(iλ
n|Tλ(C)) = σ({λn : n ∈ Z}) ∪ {λn

1 , . . . , λ
n
d : n ∈ Z} = {zn :

n ∈ Z, Pλ(z) = 0}.
(4) If λ is transcendental, then the numbers λn, n ∈ Z, are linearly independent over Q.

Consequently, Tλ(C) = 〈(λn, 1) : n ∈ Z〉 is a free abelian group of infinite rank. Observe

that the subgroup Tλ(C) of Affλ(C) is 1iλ-generated. Applying Theorem 2.2(3), we get
C∗ = σ(iλ) ⊂ σ(Affλ(C)) ⊂ C∗.

If λ is an algebraic number, then by the previous item we get σ(Affλ(C)) ⊂ A∗ 6= C∗

and Tλ(C) has finite free rank. This proves the fourth statement of Theorem 4.1.
(5) The fifth statement follows from the third statement of this theorem and Theo-

rem 3.3(2).
(6) The sixth statement follows from the third statement of this theorem and Theo-

rem 3.3(3).
(7) Finally, the seventh statement follows from the characterization of finitely presented

torsion-free abelian-by-cyclic groups given in [BiS] (and mentioned in the first section). �

It is interesting to notice that the algebraic structure of the groups Affλ(C) is completely
determined by their spectra.

Theorem 4.2. Let λ, µ ∈ C∗. The groups Affλ(C) and Affµ(C) are isomorphic if and
only if σ(Affλ(C)) = σ(Affµ(C)).

Proof. The “only if” part is trivial. To prove the “if” part, suppose that σ(Affλ(C)) =
σ(Affµ(C)). Depending on the arithmetic properties of the number λ we consider three
cases.

(1) λ is transcendental. Then σ(Affλ(C)) = C∗ and hence σ(Affµ(C)) = C∗ which
yields that µ is transcendental too, see Theorem 4.1(4). In this case the groups Affλ(C)
and Affµ(C) are isomorphic to the wreath product Z o Z.

(2) λ is a root of the unit. Then σ(Affλ(C)) = k
√

1 where k ∈ N is the minimal
number such that λk = 1. It follows that σ(Affµ(C)) = k

√
1 and hence µ is a root of

the unit with µk = 1 and µi 6= 1 for 0 < i < k, see Theorem 4.1(3). Observe that
{λi : i ∈ Z} = k

√
1 = {µi : i ∈ Z} which yields Tλ(C) = Tµ(C). Since the numbers λ and

µ are generators of the cyclic group k
√

1, there are numbers 1 ≤ p, q < k such that λp = µ
and µq = λ.

Then the groups Affλ(C) and Affµ(C) are isomorphic via the isomorphism h : (b, λi) 7→
(b, µqi) with inverse h−1 : (b, µi) 7→ (b, λpi).

(3) λ ∈ A∗ \ ∞
√

1. Then the spectrum σ(Affλ(C)) ⊂ A∗ is countable and the same is
true for the spectrum σ(Affµ(C)) which yields that µ ∈ A∗ \ ∞

√
1. Let Pλ(z) and Pµ(z)

be the minimal polynomials of the algebraic numbers λ and µ, respectively.
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To detect the number λ from the spectrum σ(Affλ(C)), we introduce a notion of an
extremal point. Given a subset A ⊂ C , define a point a ∈ A to be extremal if a 6= bn for
any b ∈ A and n ≥ 2. By ext(A) we denote the set of all extremal points of A ⊂ C .

Now consider the set ext(σ(Affλ(C))) = ext(σ(Affµ(C))) and observe that it is not
empty and lies in the intersection {z, z−1 : Pλ(z) = 0} ∩ {z, z−1 : Pµ(z) = 0}. Pick any
extremal point ν of the spectrum σ(Affλ(C)). Then Pµ(νε) = 0 and Pλ(ν

ε′) = 0 for
some ε, ε′ ∈ {−1, 1}. Replacing, if necessary, ν by ν−1 we can assume that ε′ = 1, i.e.,
Pλ(ν) = 0. This means that ν is algebraically conjugated to λ. Similarly, Pµ(ν) = 0
or Pµ(ν−1) = 0 implies that ν is algebraically conjugated to µ or µ−1. Therefore λ is
algebraically conjugated to µ or µ−1.

In the first case the groups Affλ(C) and Affµ(C) are isomorphic via the isomorphism
h : Affλ(C) → Affµ(C) sending (λi, 1) onto (µi, 1) and (0, λi) onto (0, µi) for i ∈ Z. In the
second case, these groups are isomorphic via the isomorphism sending (λi, 1) onto (µ−i, 1)
and (0, λi) onto (0, µ−i) for i ∈ Z. �

The following theorem which is the main result of this section displays the role of the
groups Affλ(C) for determining the spectrum of a group.

Theorem 4.3. A complex number λ ∈ C∗ belongs to the spectrum σ(G) of a group G if
and only if the group Affλ(C) is isomorphic to a quotient group of some subgroup of G.
Consequently, σ(G) =

⋃
λ∈σ(G) σ(Affλ(C)).

Proof. If Affλ(C) is isomorphic to a qutient group of some subgroup of G, then λ ∈
σ(Affλ(C)) ⊂ σ(G) according to Proposition 2.1 and Theorem 4.1(3). This proves the
“if” part of the theorem.

To prove the “only if” part, fix any λ ∈ σ(G) and find an element g ∈ G, a subgroup
H ⊂ G with gHg−1 = H, and a non-trivial homomorphism ϕ : H → C such that
ϕ(gxg−1) = λ · ϕ(x) for each x ∈ H. Fix any x0 ∈ H with ϕ(x0) 6= 0. Multiplying
ϕ by a suitable constant, we may assume that ϕ(x0) = 1. Without loss of generality,
H = 〈gnx0g

−n : n ∈ Z〉.
If λ = 1, then the element x0 generates an infinite cyclic subgroup of G isomorphic to

Z ∼= Aff1(C). So we can assume that λ 6= 1. Consider the 2-generated subgroup 〈g, x0〉
and observe that each element x ∈ 〈g, x0〉 can be written as x = hgn for some h ∈ H and
n ∈ Z.

We claim that the map π : 〈g, x0〉 → Affλ(C) defined by π(hgn) = (ϕ(h), λn) for h ∈ H,
n ∈ Z, is a homomorphism of 〈g, x0〉 onto Affλ(C). If 〈g〉∩H = {e}, then h is well-defined
since each element x ∈ 〈g, x0〉 can be uniquely written as x = hgn for h ∈ H, n ∈ Z. If
〈g〉∩H 6= {e}, find the smallest positive integer k with gk ∈ H\{e}. We claim that λk = 1
and ϕ(gk) = 0. Indeed, ϕ(x0) = ϕ(gk) + ϕ(x0) − ϕ(gk) = ϕ(gkx0g

−k) = λkϕ(x0) which
just yields λk = 1. To see that ϕ(gk) = 0, observe that ϕ(gk) = ϕ(g · gk · g−1) = λϕ(gk)
and use the fact that λ 6= 1.

Now we are ready to show that the map π is well defined. Assuming that h1g
n = h2g

m

for some h1, h2 ∈ H and integer n ≤ m we get gm−n = h−1
2 h1 ∈ H and thus m−n = k ·l for

some l ∈ Z. Then h1 = h2g
m−n = h2g

kl and π(h1g
n) = (ϕ(h1), λ

n) = (ϕ(h2g
kl), λm−kl) =

(ϕ(h2) + l ·ϕ(gk), λm(λk)−l) = (ϕ(h2) + l · 0, λm · 1) = (ϕ(h2), λ
m) = π(h2g

m) which shows
that π is well defined.

To see that π is a group homomorphism, observe that for any h1, h2 ∈ H and n,m ∈
Z we have π(h1g

nh2g
m) = π(h1g

nh2g
−n · gn+m) = (ϕ(h1g

nh2g
−n), λm+n) = (ϕ(h1) +

ϕ(gnh2g
−n), λn+m) = (ϕ(h1) + λnϕ(h2), λ

n+m) = (ϕ(h1), λ
n) ∗ (ϕ(h2), λ

m) = π(h1g
n) ∗

π(h2g
m). �
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Theorem 4.3 allows us to estimate the spectrum of groups possessing some hereditary
property P . We shall say that a group property P is hereditary if for any group G
possessing the property P each isomorphic copy of G, each subgroup of G, and each
quotient group of G has that property.

Corollary 4.4. If a group G possesses a hereditary property P, then σ(G) ⊂ {λ ∈ C∗ :
Affλ(C) has the property P}.

5. Interplay between reversive properties of a group and its spectrum

In this section we study so-called reversive properties of groups. The motivation to
such kind of research came from the theory of paratopological groups, see [BR].

Given a subset A of a group G define its n-th oscillators (±A)n and (∓A)n by induction:
let (±A)0 = (∓A)0 = {e} and (±A)n+1 = A·(∓A)n, (∓A)n+1 = A−1·(±A)n for n ≥ 0. For
m ∈ N by Am we denote the m-fold product of A in the group G and let A∞ =

⋃
m∈NA

m

be the semigroup generated by the subset A in G.
Let n ∈ N and m ∈ N ∪ {∞}. A group G is defined to be (n,m)-reversive if for any

subset A ⊂ G containing the neutral element e of G we have (∓A)n ⊂ (±Am)n. It is
easy to show that each (n,m)-reversive group G is (n+ 1, q)-reversive for any n ∈ N and
m < q ≤ ∞.

Observe that a group G is (1,∞)-reversive (resp. (1,m)-reversive for some m ∈ N) if
and only if G is periodic (G is of finite exponent).

Let us note that the property of a group to be (n,m)-reversive is hereditary, which
allows us to apply Theorem 4.3 to studying the spectrum of (n,m)-reversive groups. Our
principal result in this direction is

Theorem 5.1. Let G be a group.

(1) If G is (n,∞)-reversive for some n ∈ N, then σ(G) ⊂ A ∩ T.
(2) If G is (n,m)-reversive for some n,m ∈ N, then σ(G) ⊂ k

√
1 for some k ∈ N

depending only on n and m.

Proof. 1) Assume that a group G is (n,∞)-reversive for some n ∈ N but σ(G) 6⊂ A ∩ T.
Replacing n by n + 1, if necessary, we can assume that n is an odd number. Applying
Theorems 4.1(3) and 4.3 we conclude that the spectrum σ(G) of G is unbounded and
thus contains an eigenvalue λ ∈ σ(G) with |λ| > n + 1. By Theorem 4.3, Affλ(C) is a
quotient group of a subgroup of G. Taking into account that the (n,∞)-reversibility is a
hereditary property, we conclude that the group Affλ(C) is (n,∞)-reversive.

To derive a contradiction, let us make some remarks concerning the group operation in
Affλ(C).

Given an element (b, λk) ∈ Affλ(C) observe that (b, λk)−1 = (−bλ−k, λ−k) which can

be written as (b, λk)ε = (εbλ
k
2
(ε−1), λεk) for ε ∈ {−1, 1}. Next, if (b1, λ

m1), . . . , (bk, λ
mk) ∈

Affλ(C) and ε1, . . . , εk ∈ {−1, 1}, then

k∏
i=1

(bi, λ
mi) =

( k∑
i=1

biλ
∑i−1

j=1 mj , λ
∑k

i=1 mi

)
and

k∏
i=1

(bi, λ
mi)εi =

k∏
i=1

(εibiλ
mi
2

(εi−1), λεimi) =
( k∑

i=1

εibiλ
mi
2

(εi−1)+
∑i−1

j=1 εjmj , λ
∑k

i=1 εimi

)
.
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To prove that Affλ(C) is not (n,∞)-reversive, consider the elements gi = (δi, λ
i) ∈

Affλ(C), i ≥ 0, where δi = (i mod 2). Note that g0 is the neutral element of Affλ(C).

We claim that
∏2n−1

i=n g
(−1)i

i /∈ (±S)n where S ⊂ Affλ(C) is the semigroup generated
by the elements g0, gn, gn+1, . . . , g2n−1. Assuming that this is not so we would find finite
sequences m1, . . . ,ml ∈ {n, . . . , 2n− 1} and ε1, . . . , εl ∈ {−1, 1} for some l ∈ N such that

2n−1∏
i=n

g
(−1)i

i =
l∏

i=1

gεi
mi

and the sequence ε1, . . . , εl is n-oscillating in the sense that there are numbers 0 = l0 ≤
l1 ≤ · · · ≤ ln = l such that for any i ∈ {1, . . . , n} and j ∈ (li−1, li] we get εj = 1 if i is odd
and εj = −1 if i is even.

Observe that
2n−1∏
i=n

g
(−1)i

i =
2n−1∏
i=n

(δi, λ
i)(−1)i

=
( 2n−1∑

i=n

(−1)iδiλ
i
2
((−1)i−1)+

∑i−1
j=n(−1)j j, λ

∑2n−1
i=n (−1)i i

)
and

l∏
i=1

gεi
mi

=
l∏

i=1

(δmi
, λmi)εi =

( l∑
i=1

εiδmi
λ

mi
2

(εi−1)+
∑i−1

j=1 εjmj , λ
∑l

i=1 εimi

)
.

The equality
∏2n−1

i=n g
(−1)i

i =
∏l

i=1 g
εi
mi

implies
∑l

i=1 εimi =
∑2n−1

i=n (−1)ii and P (λ) = 0
where

P (λ) = −
2n−1∑
i=n

(−1)iδiλ
i
2
((−1)i−1)+

∑i−1
j=n(−1)j j +

l∑
i=1

εiδmi
λ

mi
2

(εi−1)+
∑i−1

j=1 εjmj =

q∑
i=p

aiλ
i

for some integers p < q and some integer coefficients ai with |ai| ≤ n for p ≤ i ≤ q
(the upper bound |ai| ≤ n follows from the n-oscillation nature of the sequence (εi) and
the strict positivity of the numbers mi). We claim that all the coefficients ai are zero.
Assuming the converse we could suppose that aq 6= 0. Multiplying P (λ) by λ−p we would

get 0 = λ−pP (λ) =
∑q

i=p aiλ
i−p =

∑q−p
i=0 ai+pλ

i and thus

|λ|q−p =
∣∣ q−p−1∑

i=0

ai+p

aq

λi
∣∣ ≤ q−p−1∑

i=0

∣∣ai+p

aq

∣∣·|λ|i ≤ n

q−p−1∑
i=0

|λ|i = n
|λ|q−p − 1

|λ| − 1
≤ |λ|q−p−1 < |λ|q−p

which is a contradiction. Thus all the coefficients ai are zero.
This implies that for every odd number r ∈ {n, . . . , 2n − 1} there is a number ir ∈

{1, . . . , l} such that εir = −1 and −r +
∑r−1

j=n(−1)jj = −mir +
∑ir−1

j=1 εjmj which yields

ir∑
j=1

εjmj =
r∑

j=n

(−1)jj =
r − n

2
− r = −n+ r

2
.

It follows that ir 6= is if r, s ∈ {n, . . . , 2n − 1} are two distinct odd numbers. Since n is
odd, be the Dirichlet principle there are two distinct odd numbers r, s ∈ {n, . . . , 2n− 1}
such that ir < is and ir, is ∈ (lp−1, lp] for some even p ∈ {1, . . . , n}. Then εj = −1 for any
j ∈ [ir, is] and thus

−
∑

ir<j≤is

mi =
is∑

j=1

εjmj −
ir∑

j=1

εjmj =
r∑

j=1

(−1)jj −
s∑

j=1

(−1)jj = −n+ r

2
+
n+ s

2
=
s− r

2
.
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Now the absurd conclusion n ≤
∣∣ ∑

ir<j≤is
mj

∣∣ =
∣∣ s−r

2

∣∣ < n finishes the proof of the first
statement of Theorem 5.1.

2) Now assume that a group G is (n,m)-reversive for some n,m ∈ N. Without loss of
generality we can assume that n is an odd number. Consider the number
l = 2mn(2mn+ 1)(2mn+1)n

. We claim that σ(G) ⊂ l!
√

1. Assuming the converse we would
find an eigenvalue λ ∈ σ(G) such that λl! 6= 1. By Theorem 4.3, the group Affλ(C) is
isomorphic to a quotient group of some subgroup of G. Since the (n,m)-reversivity is
a hereditary property, we conclude that the group Affλ(C) is (n,m)-reversive. We shall
show that this is not so.

Let M = {i ∈ Z : |i| ≤ mn}. Given k ∈ N and two vectors ~x, ~y ∈ Zk let (~x · ~y) =∑k
i=1 xiyi denote their inner product and let ‖~x‖ = max1≤i≤k |xi|.

Claim. For every k ≤ n there is a vector ~x ∈ Zk with ‖~x‖ ≤ l such that for any vector

~a = (a~v)~v∈Mk ∈MMk
the equality

∑
~v∈Mk a~vλ

(~v·~x) = 0 holds if and only if ~a = ~0.

Proof. This claim will be proven by finite induction on k ≤ n. For k = 0 the Claim is
trivial. Assume that for some k < n a number vector ~x ∈ Zk with ‖~x‖ ≤ l is constructed

so that
∑

~v∈Mk a~vλ
(~v·~x) 6= 0 for any non-zero vector (a~v)~v∈Mk ∈ MMk

. For any non-zero

vector ~a = (a(~v,v))(~v,v)∈Mk×M ∈M (Mk×M) consider the polynomial

P~a(z) =
mn∑

v=−mn

( ∑
~v∈Mk

a(~v,v)λ
(~v·~x)

)
zv+mn

of degree at most 2mn. By the choice of the vector ~x,
∑

~v∈Mk a(~v,v)λ
(~v·~x) 6= 0 for some

v ∈ M and thus the polynomial P~a(z) is non-trivial and has at most 2mn roots. Since
the numbers λ0, λ1, . . . , λl are pairwise distinct and

l ≥ 2mn|MMk+1| = 2mn(2mn+ 1)(2mn+1)k+1

,

there is an integer x ∈ {0, . . . , l} such that P~a(λ
x) 6= 0 for any non-zero vector ~a ∈

MMk+1
. Put ~y = (~x, x) ∈ Zk × Z = Zk+1 and observe that for any non-zero vector

~a = (a(~v,v))(~v,v)∈Mk×M ∈MMk+1
we have∑

(~v,v)∈Mk×M

a(~v,v)λ
((~v,v)·~y) =

∑
v∈M

∑
~v∈Mk

a(~v,v)λ
(~v,~x)+vx =

=
∑
v∈M

( ∑
~v∈Mk

a(~v,v)λ
(~v,~x)

)
λxv = λ−mnxP~a(λ

x) 6= 0.

This completes the inductive step as well as the proof of Claim. �

Using the above Claim, fix a number vector ~k = (k1, . . . , kn) ∈ Zn with ‖~k‖ ≤ l

such that
∑

~v∈Mn a~vλ
(~v·~k) 6= 0 for any non-zero vector (a~v)~v∈Mn ∈MMn

. Observe that the

numbers k1, . . . , kn are pairwise distinct. Let K = {k1, . . . , kn} and K = {
∑

~v∈Mn a~vλ
(~v·~k) :

(a~v)~v∈Mn ∈MMn}.
Consider the subgroups H = {z ∈ C : (z, 1) ∈ Tλ(C)} of C and its power HK .

The group HK , being abelian, is amenable and thus admits an invariant probability

finitely-additive measure µ. It is easy to see that for any distinct vectors ~a,~b ∈ CK the

“hyperplane” Γ(~a,~b) = {~x ∈ HK : (~x · ~a) = (~x ·~b)} is a subgroup of infinite index in HK .

Then µ(Γ(~a,~b)) = 0 and consequently, HK 6= ∪{Γ(~a,~b) : ~a 6= ~b and ~a,~b ∈ KK}. Pick

any vector ~x ∈ HK such that (~x · ~a) 6= (~x ·~b) for any distinct vectors ~a,~b ∈ KK . Write
~x = (xk1 , . . . , xkn) ∈ HK .
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To prove that Affλ(C) fails to be (n,m)-reversive, we shall show that (∓A)n 6⊂ (±Am)n

where A = {(0, 1), (xki
, λki) : 1 ≤ i ≤ n}. Namely,

∏n
i=1(xki

, λki)(−1)i 6⊂ (±Am)n. As-
suming the converse, we would find number sequences m1, . . . ,mq ∈ {k1, . . . , kn} and
ε1, . . . , εq ∈ {−1, 1} for some q ≤ nm such that

n∏
i=1

(xki
, λki)(−1)i

=

q∏
i=1

(xmi
, λmi)εi

and the sequence ε1, . . . , εq is n-oscillating in the sense that there are numbers 0 = q0 ≤
q1 ≤ · · · ≤ qn = l such that for any i ∈ {1, . . . , n} and j ∈ (qi−1, qi] we get εj = 1 if i is
odd and εj = −1 if i is even.

Observe that
n∏

i=1

(xki
, λki)(−1)i

=
( n∑

i=1

(−1)ixki
λ

ki
2

((−1)i−1)+
∑i−1

j=1(−1)jkj , λ
∑n

i=1(−1)iki

)
while

q∏
i=1

(xmi
, λmi)εi =

( q∑
i=1

εixmi
λ

mi
2

(εi−1)+
∑i−1

j=1 εjmj , λ
∑q

i=1 εimi

)
=

( n∑
r=1

frxkr , λ
∑q

i=1 εimi

)
where

fr =
∑

mi=kr

εiλ
mi
2

(εi−1)+
∑i−1

j=1 εjmj ∈ K for 1 ≤ i ≤ n.

It follows that
∑n

i=1 fixki
=

∑n
i=1(−1)ixki

λ
ki
2

((−1)i−1)+
∑i−1

j=1(−1)jkj . By the choice of the

vector ~x, we get fi = (−1)i · λ
ki
2

((−1)i−1)+
∑i−1

j=1(−1)jkj for every i ≤ n.

The last equality and the choice of the vector ~k imply that for every odd number
r ∈ {1, . . . , n} there is a number ir ∈ {1, . . . , q} such that mir = kr, εir = −1, and

−mir +
∑ir−1

j=1 εjmj = −kr +
∑r−1

j=1(−1)jkj which yields
∑ir

j=1 εjmj =
∑r

j=1(−1)jkj. It

follows from the choice of the vector ~k that
∑r

j=1(−1)jkj 6=
∑s

j=1(−1)jkj for distinct

numbers r, s ∈ {1, . . . , n}. Since n is odd by the Dirichlet principle there are two distinct
odd numbers r, s ∈ {1, . . . , n} such that ir < is and ir, is ∈ (qp−1, qp] for some even
p ∈ {1, . . . , n}. Then εj = −1 for any j ∈ [ir, is] and thus

−
∑

ir<j≤is

mj =
is∑

j=1

εjmj −
ir∑

j=1

εjmj =
r∑

j=1

(−1)jkj −
s∑

j=1

(−1)jkj.

This implies that
∑

min{r,s}<j≤max{r,s}
(−1)jkj = ±

∑
ir<j≤is

mj which is not possible accord-

ing to the choice of the vector ~k. This contradiction finishes the proof of the second
statement of Theorem 5.1. �

It is interesting to notice that (3,∞)- and (2,∞)-reversive groups can be characterized
as groups containing no free semigroup with two generators.

Theorem 5.2. A group G is (3,∞)-reversive if and only if G is (2,∞)-reversive if and
only if G contains no free semigroup with two generators.

Proof. 1) Suppose that G contains no free semigroup with two generators. To show that
G is (2,∞)-reversive we have to verify that A−1A ⊂ A∞ · (A∞)−1 for any subset A ⊂ G
containing the unit of G. Fix any two distinct elements x, y ∈ A. Since the semigroup
S ⊂ A∞ generated by {x, y} is not free, there are two different words w, v in the alphabet
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{x, y} such that w = v in G. After the left cancellation, we can assume that w and v
begin with different letters, say w = xw1 and v = yv1 (where the words w1, v1 can be
empty). Then xw1 = yv1 and thus x−1y = w1v

−1
1 ∈ SS−1 ⊂ A∞ · (A∞)−1. It follows that

A−1A ⊂ A∞ · (A∞)−1, i.e., G is (2,∞)-reversive.
2) Next, assume that the group G is (2,∞)-reversive. To show that G is (3,∞)-

reversive, fix any three points x, y, z ∈ G. We have to verify that x−1yz−1 ∈ SS−1S
where S is the semigroup generated by the set {e, x, y, z}. Since the group G is (2,∞)-
reversive, x−1y = wv−1 ∈ SS−1, where w, v are two words in the alphabet {x, y}. Then
x−1yz−1 = wv−1z−1 ∈ SS−1 ⊂ SS−1S.

3) Assume finally that a group G is (3,∞)-reversive. We shall show that G contains
no free semigroup with two generators. Fix arbitrary two points x, z ∈ G. Without loss
of generality, the elements x and z are distinct and differ from the unit e of G. Take any
element y ∈ G \ {e, x, z} and consider the set A = {e, x, y, z}. It follows from the (3,∞)-
reversivity of G that x−1yz−1 = u(x, y, z)v−1(x, y, z)w(x, y, z) in G for some (possibly
empty) words u(x, y, z), v(x, y, z), w(x, y, z) in the alphabet {x, y, z}. After inversion,
we get zy−1x = w−1(x, y, z)v(x, y, z)u−1(x, y, z) and w(x, y, z)zy−1xu(x, y, z) = v(x, y, z).
It can be shown that either the word w(x, x, z)zu(x, x, z) differs from v(x, x, z) or the
word w(x, z, z)xu(x, z, z) differs from v(x, z, z). In any case we find two different words
in the alphabet {x, z} which yield equal elements in G. This implies that the semigroup
generated by the elements x, z in G is not free. �

Using the previous characterization we shall show that for (3,∞)-reversive groups The-
orem 5.1(1) holds in a more strong form, which is close to Theorem 5.1(2).

Corollary 5.3. σ(G) ⊂ ∞
√

1 for any (3,∞)-reversive group G.

Proof. Assume that G is a (3,∞)-reversive group and fix any λ ∈ σ(G). By Theo-
rem 4.3, the group Affλ(C) is isomorphisc to a quotient group of a subgroup of G.
Taking into account that the (3,∞)-reversivity is a hereditary property, we conclude
that the group Affλ(C) is (3,∞)-reversive and thus contains no free semigroup with
two generators according to Theorem 5.2. Applying finally Theorem 4.1(6), we get
λ ∈ σ(Affλ(C)) ⊂ ∞

√
1. �

Next, we characterize (3,m)- and (2,m)-reversive groups. Following [Sh], [SS] we define
a group G to be (n,m)-collapsing if Card(Am) < (Card(A))m for any n-element subset
A ⊂ G. A group G is collapsing if it is (n,m)-collapsing for some n,m ∈ N. It is easy to
see that each (n,m)-collapsing group is (p, q)-collapsing for each n ≤ p <∞, m ≤ q <∞.
Conversely, for every n,m ∈ N there is l ∈ N such that each (n,m)-collapsing group is
(2, l)-collapsing, see [Mac]. The class of collapsing groups is quite wide: it contains all
groups with positive laws, in particular, all virtually nilpotent groups, see [SS], [Sh] or
[Mac].

Theorem 5.4. A group G is collapsing if and only if it is (2,m)-reversive for some
m ∈ N if and only if G is (3,m)-reversive for some m ∈ N. More precisely, for every
m ∈ N each (2,m)-collapsing group is (2,m)-reversive, each (2,m)-reversive group is
(3,m+ 1)-reversive, and each (3,m)-reversive group is (2, 4m+ 2)-collapsing.

Proof. 1) First, assume that G is a (2,m)-collapsing group for some m ∈ N. To prove
that G is (2,m)-reversive, it suffices to show that x−1y ∈ Am ·A−m for each three element
subset A = {x, y, e} of G. Since the group G is (2,m)-collapsing, Card({x, y}m) < 2m

which yields that there are two different m-letter words w, v in the alphabet {x, y} such
that w = v in G. After left cancellation, we can assume that w and v begin with
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different letters, say w = xw1, v = yv1 and have length ≤ m. Then xw1 = yv1 and thus
x−1y = w1v

−1
1 ∈ AmA−m.

2) Next, assume that a group G is (2,m)-reversive. To prove that G is (3,m + 1)-
reversive, it suffices given three elements x, y, z ∈ G to find three words u, v, w of length
≤ m + 1 in the alphabet {x, y, z} such that x−1yz−1 = uv−1w in G. Since G is (2,m)-
reversive there are two words a, b of length ≤ m in the alphabet {x, y} such that x−1y =
ab−1 in G. Let u = a, v = zb and w = ∅. Then u,w, v are words of length ≤ m+ 1 in the
alphabet {x, y, z} such that x−1yz−1 = ab−1z−1 = uv−1w which yields that the group G
is (3,m+ 1)-reversive.

3) Finally, assume that the group G is (3,m)-reversive. We shall show that G is
(2, 4m + 2)-collapsing. Fix arbitrary two points x, z ∈ G. Using the (3,m)-reversivity of
G and repeating the argument of Theorem 5.2, we could find two diferent words w, v of
lenght ≤ 2m+ 1 in the alphabet {x, z} such that w = v in G. After the left cancellation
we can assume that the words w, v begin with different letters. Then wv and vw are two
different word of the same lenght ≤ 4m + 2 which are equal in G. This implies that the
group G is (2, 4m+ 2)-reversive. �

Theorems 5.1 and 5.4 imply that collapsing groups have finite spectrum.

Corollary 5.5. If G is a (2,m)-collapsing group for some m ∈ N, then σ(G) ⊂ l
√

1 for
some l ∈ N depending only on m.

Finally, using Theorem 5.1 we characterize (n,m)-reversive polycyclic groups.

Corollary 5.6. For a polycyclic group G the following conditions are equivalent:

(1) G is virtually nilpotent;
(2) σ(G) ⊂ n

√
1 for some n;

(3) σ(G) ⊂ T;
(4) G is (n,∞)-reversive for some n ∈ N;
(5) G is (2,∞)-reversive;
(6) G is (2,m)-reversive for some m ∈ N;
(7) G is collapsing;
(8) G contains no free semigroup with two generators;
(9) G has polynomial growth.

Proof. The equivalences (5) ⇔ (8) and (6) ⇔ (7) follow from Theorems 5.2 and 5.4,
respectively. The equivalence (1) ⇔ (9) is a partial case of Gromov Theorem [Gr] while
the implication (1) ⇒ (7) is proven in [SS] (see also [Sh] and [Mac]).

So it rests to prove the implications (6) ⇒ (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1). The first two
implications are trivial, the third one follows from Theorem 5.1(1) and the last one from
Theorem 3.3(3).

To prove the implication (3) ⇒ (2), assume that σ(G) ⊂ T. Taking into account that
G is polycyclic we get the inclusion σ(G) ⊂ A ∩ T. Then for any eigenvalue λ ∈ σ(G)
all of its algebraically conjugated belong to σ(G) and thus have absolute value 1. By
the Kronecker Theorem (see [?, 3.2] or [Ro, p.49]), λ is a root of 1. Thus σ(G) ⊂ ∞

√
1.

Next, by Theorem 3.4, G contains a subgroup H of finite index whose spectrum σ(H) is
finitely splittable. Since H is finitely generated, σ(H) ⊂ ∞

√
1 is a finite union of finitely

generated subgroups of the multiplicative group ∞
√

1. Consequently, the spectrum σ(H)
of H is finite and σ(H) ⊂ n

√
1 for some n ∈ N. Finally, applying Theorem 3.1(9), we get

σ(G) ⊂ m
√
σ(H) ⊂ nm

√
1 for some m ∈ N. �
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6. Some comments and open problems

Now it is time to reveal the genuine nature of eigenvalues of a group automorphism
A : G → G. In fact, they are the usual eigenvalues of the conjugated linear operator
A] acting on the linear inverse semigroup PHom(G,C) of partial homomorphisms from
G into the field C . Under a partial homomorphism from a group G into a group K we
understand a homomorphism ϕ : D(ϕ) → K defined on some subgroup D(ϕ) of G. If
K is a commutative group, then the set PHom(G,K) of partial homomorphisms from G
into K carries the structure of a commutative inverse semigroup.

We remind that a semigroup S is called an inverse semigroup if for each x ∈ S there
is a unique element x−1, called the inverse element to x, such that xx−1x = x and
x−1xx−1 = x−1, see [CP]. Each group is an inverse semigroup; conversely, an inverse
semigroup is a group if and only if it has a unique idempotent. We remind that an
element x ∈ S is an idempotent if xx = x.

Suppose G is a group and (K,+) is an abelian group. For two partial homomorphisms
ϕ, ψ ∈ PHom(G,K) let ϕ+ψ be the partial homomorphism with D(ϕ+ψ) = D(ϕ)∩D(ψ)
such that (ϕ+ ψ)(x) = ϕ(x) + ψ(x) for each x ∈ D(ϕ+ ψ). It is easy to verify that this
operation “+” turns PHom(G,K) into a commutative inverse semigroup. The inverse
element to a partial homomorphism ϕ : D(ϕ) → K is the homomorphism −ϕ : D(ϕ) →
K. A partial homomorphism ϕ ∈ PHom(G,K) is an idempotent in PHom(G,K) if
and only if ϕ(D(ϕ)) = {0} ⊂ K. Thus the semigroup of idempotents of PHom(G,K)
can be identified with the semilattice of subgroups of G endowed with the operation of
intersection (this semilattice was intensively studied in Lattice Theory, see [Bi] or [Schm]).

Problem 6.1. To which extent the properties of the inverse semigroup PHom(G,K)
determine the structure of the group G? In particular, are two groups G,H isomorphic if
the inverse semigroups PHom(G,K) and PHom(H,K) are isomorphic for every abelian
group K?

Let us remark that even for the trivial groupK = {0} the inverse semigroup PHom(G, {0})
(which can be identified with the lattice of subgroups of G) carries a non-trivial informa-
tion on the structure of a group G, see [Bi] or [Schm]. For example, a group G is solvable
if PHom(G, {0}) is isomorphic to PHom(H, {0}) for some solvable group H, see [Ya].

IfK is a ring, then besides the additive operation, the semigroup PHom(G,K) possesses
an external operation of multiplication by scalars (·) : K×PHom(G,K) → PHom(G,K),
(·) : (λ, ϕ) 7→ λ · ϕ. In this case PHom(G,K) carries an algebraic structure which can be
called the structure of an inverse K-module.

Under a linear operator on PHom(G,K) we shall understand a semigroup homomor-
phism A : PHom(G,K) → PHom(G,K) such that A(λ ·ϕ) = λ ·A(ϕ) for any λ ∈ K and
ϕ ∈ PHom(G,K). A partial homomorphism ϕ ∈ PHom(G,K) is called an eigenvector of
a linear operator A : PHom(G,K) → PHom(G,K) if ϕ + ϕ 6= ϕ and A(ϕ) = λ · ϕ for
some scalar λ ∈ K called the eigenvalue corresponding to the eigenvector ϕ.

Each automorphism A : G → G of the group G induces a linear operator A] :
PHom(G,K) → PHom(G,K) assigning to a partial homomorphism ϕ ∈ PHom(G,K)
the partial homomorphism ϕ ◦ A : A−1(D(ϕ)) → K defined on the subgroup A−1(D(ϕ))
of G.

Observe that a partial homomorphism ϕ ∈ PHom(G,K) is an eigenvector of the op-
erator A] if and only if A(D(ϕ)) = D(ϕ) and A](ϕ) = ϕ ◦ A|D(ϕ) = λ · ϕ for some
λ ∈ K.
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Now we see that a complex number λ ∈ C is an eigenvalue of a group automorphism A :
G→ G if and only if λ is an eigenvalue of the induced linear operator A] : PHom(G,K) →
PHom(G,K). This observation allows us to generalize the notion of an eigenvalue of a
group automorphism as follows.

An element λ of a ring K is called a K-eigenvalue of a group automorphism A : G→ G
if λ is an eigenvalue of the induced linear operator A] : PHom(G,K) → PHom(G,K) (the
latter means that there is a non-zero homomorphism ϕ : H → K defined an A-invariant
subgroup H ⊂ G such that ϕ ◦ A|H = λ · ϕ). The set of all K-eigenvalues of A is called
the K-spectrum of A and is denoted by σK(A).

Under the K-spectrum of a group G we understand the union σK(G) =
⋃

g∈G σK(ig) of

the K-spectra of all the inner automorphisms of G. It is clear that σK(G) = σK(G′) for
any isomorphic groups G,G′.

In this terminology the spectra considered in the previous sections are nothing else
but C-spectra. As we saw, the C-spectrum carries no information on the structure of a
periodic group. It may happen that the situation in more fortunate for K-spectra where
K is a field of finite characteristic.

Problem 6.2. What can be said about the K-spectrum of a (periodic) group for a field K
of finite characteristic.

According to Theorem 4.2 the spectrum completely determines the algebraic structure
of the groups Affλ(C). It may happen that the spectrum characterizes these groups in
the class of torsion-free solvable groups with spectrally minimal Hirsch rank. We shall
say that a solvable group G has spectrally minimal Hirsch rank if h(G) = min{h(H) : H
is a solvable group with σ(H) = σ(G)}.

Question 6.3. Suppose that G is a solvable torsion-free group with spectrally minimal
Hirsch rank. Is G isomorphic to Affλ(C) if σ(G) = σ(Affλ(C))?

As we saw in Theorem 4.1, the condition λ ∈ A∗
Z ∪ (A∗

Z)−1 is responsible for the finite
presentability of the group Affλ(C).

Problem 6.4. What can be said about the spectrum of a finitely presented group? In
particular, is a torsion-free finitely generated solvable group G with σ(G) ⊂ A∗

Z ∪ (A∗
Z)−1

finitely presented?

Another open problem concerns the interplay between the spectrum and the asymptotic
geometry of a finitely generated group G. The asymptotic geometry studies the properties
of groups preserved by quasi-isometries, see [Gro] and [Har]. Under a quasi-isometry
between metric spaces (X, dX) and (Y, dY ) we understand a map f : X → Y satisfying the
following two conditions for some constant C ≥ 1: (i) 1

C
dX(x, x′)−C ≤ dY (f(x), f(x′)) ≤

CdX(x, x′) + C for any x, x′ ∈ X and (ii) dY (y, f(X)) < C for any y ∈ Y .
Any group G generated by a finite set X is endowed with the word metric dX(a, b) =

min{n ∈ ω : a−1b ∈ (X ∪{e}∪X−1)n}. It is known that for any finite generating subsets
X, Y ⊂ G the identity map (G, dX) → (G, dY ) is a quasi-isometry. Hence we can say
about asymptotic properties of a group with no referring to a particular finite generating
set of G. In [FM] the reader can find conditions on integer algebraic numbers λ, µ ∈ A∗

Z
under which the (finitely presented) test groups Affλ(C) and Affµ(C) are quasi-isometric.

Problem 6.5. To which extent the spectrum determines the asymptotic geometry of a
finitely generated group G? In particular, are two polycyclic groups G and H quasi-
isometric if they have spectrally minimal Hirsch ranks and σ(G) = σ(H)?
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Another open problem concerns the algebraic structure of the spectrum of a solvable
group. According to Theorem 3.4, each (finitely generated) solvable A1-group G contains
a subgroup H of finite index whose spectrum σ(H) is a finite union of (finitely generated)
subgroup of C∗.

Question 6.6. Is the spectrum σ(G) of a (finitely generated) solvable A1-group G a finite
union of (finitely generated) subgroups of C∗?

Finally let us discuss (n,∞)-reversive groups. Theorem 5.1 shows that σ(G) ⊂ A ∩ T
for any such a group G. On the other hand, for any (3,∞)-reversive group G a stronger
inclusion holds: σ(G) ⊂ ∞

√
1, see Corollary 5.3.

Problem 6.7. Is σ(G) ⊂ ∞
√

1 for any (n,∞)-reversive group G, where n ∈ N?

In fact, except for the case n = 1 we know no example distinguishing between the
(n,∞)-reversive and (n + 1,∞)-reversive groups. Theorem 5.2 shows that no such an
example exists for n = 2.

Problem 6.8. Is there an (m,∞)-reversive group which is not (n,∞)-reversive for some
m > n ≥ 2. In particular, is the wreath product (Z/pZ) o Z (n,∞)-reversive for some
n, p ≥ 2? Is a test group Affλ(C) (n,∞)-reversive for some n ∈ N and λ /∈ ∞

√
1?

In fact the very term “(n,m)-reversive group” was suggested by the notion of a left
(right) reversive semigroup, well-known in the Theory of Semigroups, see [CP]. We re-
mind that a semigroup S is left (resp. right) reversive if for any elements a, b ∈ S the
intersection aS ∩ bS (resp. Sa∩Sb) is not empty. If S is a subsemigroup of a group, then
the latter condition is equivalent to S−1S ⊂ SS−1 (resp. SS−1 ⊂ S−1S). Hence a group
G is (2,∞)-reversive if and only if any subsemigroup S of G is left reversive. An example
of a left reversive semigroup which is not right reversive can be found in [CP, Ex.1 to
§1.10]. This is the semigroup generated by the transformations w = 2z and w = z + 1 in
the test group Aff2(C).

Problem 6.9. Is it true that for every n ∈ N there is a subsemigroup S of a group G
such that (∓S)n ⊂ (±S)n but (±S)n 6⊂ (∓S)n?

A positive answer to this problem would imply a positive solution of Problem 1(4) from
[BR] concerning n-oscillating paratopological groups.

The spectrum σ(G) of a group G consists of eigenvalues of all the inner automorphisms
of G and thus can be referred to as the inner spectrum of G. Besides this inner spectrum
it is reasonable to consider also the full spectrum Σ(G) consisting of eigenvalues of all the
automorphisms of G. The inner and full spectra are related as follows:

σ(G) ⊂ Σ(G) ⊂ σ(Hol(G))

where Hol(G) is the holomorph of the group G. Observe that the sets σ(G), Σ(G) and
σ(Hol(G)) can differ substantially. For example, σ(Z2) = {1}, Σ(Z2) = A∗

1 ∩ A(2), while
σ(Hol(Z2)) = C∗ (because the automorphism group of Z2 contains a free group with two
generators, see [Sk, p.98]).

Problem 6.10. Invesigate the interplay between properties of a group G and properties
of its full spectrum Σ(G).

It seems that unlike to the inner spectrum the full spectrum can shed some light on
the structure of abelian or nilpotent groups.
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