Archive: | 2008/09 | 2009/10 | 2010/11 | 2011/12 | 2012/13 | 2013/14 | 2014/15 | 2015/16 | 2016/17 | 2017/18 | 2018/19 | 2019/20 | 2018/19 | 2020/21 |



Scientific Seminar:

Topological Algebra
Founded by Igor Guran & Oleg Gutik in 2007

Advisor: Oleg Gutik



Speaker: Oleg Gutik

Talk:

On the monoid of cofinite partial isometries of $\mathbb{N}$ with a bounded finite noise

When & where: October 7, 2020, at 1640 in ZOOM
Abstract:

We extend results of the papers [Carl Eberhart and John Selden, On the Closure of the Bicyclic Semigroup, Transactions of the American Mathematical Society, Vol. 144 (Oct., 1969), pp. 115-126 ] and [M. O. Bertman and T. T. West, Conditionally Compact Bicyclic Semitopological Semigroups, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences Vol. 76 (1976), pp. 219-226] for the monoid $\mathbf{I}\mathbb{N}_{\infty}^{\textbf{g}[j]}$ of cofinite partial isometries of $\mathbb{N}$ with a bounded finite noise for any positive integer $j$. In particular we show that for any positive integer $j$ every Hausdorff shift-continuous topology $\tau$ on $\mathbf{I}\mathbb{N}_{\infty}^{\textbf{g}[j]}$ is discrete and and if $\mathbf{I}\mathbb{N}_{\infty}^{\textbf{\emph{g}}[j]}$ be a proper dense subsemigroup of a Hausdorff semitopological semigroup $S$, then $S\setminus \mathbf{I}\mathbb{N}_{\infty}^{\textbf{\emph{g}}[j]}$ is a closed ideal of $S$, and moreover if $S$ is a topological inverse semigroup then $S\setminus \mathbf{I}\mathbb{N}_{\infty}^{\textbf{\emph{g}}[j]}$ is a topological group.
This is a joint work with Pavlo Khylynskyi.



| Archive | Home |