УДК 517.5

ПРО МІНІМУМ МОДУЛЯ ЦІЛОЇ ФУНКЦІЇ НУЛЬОВОГО РОДУ

О. Б. Скасків, І. Е. Чиженков

Для мероморфної функції f позначимо $M_f(r) = \max\{|f(z)| : |z| = r\}$, $m_f(r) = \min\{|f(z)| : |z| = r\}$. А. А. Гольдберг довів наступну теорему.

Теорема А [1]. Якщо f — мероморфна у комплексній площині функція порядку нуль і

$$\lim_{r \to +\infty} \frac{N(r, 0, f) + N(r, \infty, f)}{\ln^2 r} \leq \sigma < +\infty,$$

то

$$\lim_{r \to +\infty} \frac{m_f(r)}{M_f(r)} \geq C(\sigma) = \left(\prod_{n=1}^{+\infty} \frac{1 - q^{2n-1}}{1 + q^{2n-1}}\right)^2, \quad q = e^{-\frac{1}{\sigma}},$$

де $N(r, 0, f)$ і $N(r, \infty, f)$ — усерединні лінійні функції відповідно нуляв і полосів функції f (означення див. [2]), $C(0) = 1$.

При цьому він висловив припущення [1], що теорема A справедлива для кожної мероморфної функції нульового роду, як тільки виконується умова (1).

У статті [3] доведено, що нерівність (2) є правильна для кожної мероморфної функції нульового роду, як тільки виконується умова

$$\lim_{r \to +\infty} \frac{\frac{r}{\ln^2 r} \int_r^{+\infty} \frac{N(r, 0, f) + N(r, \infty, f)}{t^2} \, dt}{\ln^2 r} \leq \sigma < +\infty,$$

яка є деяко сильнішою за умову (1). З умови (1) для мероморфної функції нульового порядку, а з умови (3) для мероморфної функції нульового роду випливає при $\sigma = 0$ рівність

$$\lim_{r \to +\infty} \frac{m_f(r)}{M_f(r)} = 1.$$

Тому природно постає питання про необхідні і достатні умови справедливості рівності (4) в класі мероморфних функцій нульового роду. Тут ми даемо відповідь на це питання у випадку цілих функцій нульового роду. Власне, якщо $\lambda = (\lambda_n)$ — неспадна до $+\infty$ послідовність додатних чисел така, що $\sum_{n=1}^{+\infty} \frac{1}{\lambda_n} < +\infty$, то через $Z(\lambda)$ позначимо клас цілих функцій f нульового роду таких, що

$$f(z) = \prod_{n=1}^{+\infty} \left(1 - \frac{z}{a_n}\right), \quad |a_n| = \lambda_n \, (n \geq 1),$$

тобто клас функцій з фіксованою послідовністю $(|a_n|)$.

Правильна наступна теорема.

Дослідження частково підтримані грантами INTAS, проект 99-0089
Теорема. Для того, щоб для цілої функції \(f \in Z(\lambda) \) справджувалась рівність (4) досить, а у випадку коли, \(a_n = \lambda_n \ (n \geq 1) \), і необхідно, щоб

\[
\lim_{r \to +\infty} \left(\frac{1}{r} \sum_{\lambda_n \leq r} \lambda_n + r \sum_{\lambda_n > r} \frac{1}{\lambda_n} \right) = 0. \tag{5}
\]

Доведення. Враховуючи, що при \(|z| = r > 0 \)

\[
|f(z)| \leq \prod_{n=1}^{+\infty} \left(1 + \frac{r}{\lambda_n} \right) = \hat{f}(-r), \quad |f(z)| \geq \prod_{n=1}^{+\infty} \left| 1 - \frac{r}{\lambda_n} \right| = \hat{f}(r),
\]

де \(\hat{f}(z) = \prod_{n=1}^{+\infty} \left(1 - z / \lambda_n \right) \), то \(M_f(r) \leq \hat{f}(-r) = M_{\hat{f}}(r) \) і \(m_f(r) \geq \hat{f}(r) = m_{\hat{f}}(r) \), а отже, досить довести теорему для функції \(\hat{f} \). Далі для \(r \notin \{\lambda_n\} \)

\[
\ln \frac{M_f(r)}{m_f(r)} \leq \sum_{\lambda_n < r} \ln \frac{1 + \frac{r}{\lambda_n}}{1 - \frac{r}{\lambda_n}} + \sum_{\lambda_n > r} \ln \frac{\frac{r}{\lambda_n} + 1}{\frac{r}{\lambda_n} - 1} = \Pi_1(r) + \Pi_2(r). \]

Тому досить показати, що \(\lim_{r \to +\infty} (\Pi_1(r) + \Pi_2(r)) = 0 \) тоді і тільки тоді, коли виконується умова (5).

Запам’ятаймо, що

\[
\Pi_1(r) = \sum_{\lambda_n < r} \ln \left(1 + \frac{2\lambda_n}{r - \lambda_n} \right) \overset{\text{def}}{=} \sum_{\lambda_n < r} c_n(r),
\]
\[
\Pi_2(r) = \sum_{\lambda_n > r} \ln \left(1 + \frac{2r}{\lambda_n - r} \right) \overset{\text{def}}{=} \sum_{\lambda_n > r} d_n(r),
\]

при цьому \(c_n(r) > 0 \) і \(d_n(r) > 0 \) для всіх \(n \geq 1 \) і \(r \notin \{\lambda_n\} \).

Припустимо, що виконується умова (5). Тоді існує така послідовність \(r_j \uparrow +\infty \), що при \(r = r_j \to +\infty \)

\[
\frac{1}{r} \sum_{\lambda_n \leq r} \lambda_n + r \sum_{\lambda_n > r} \frac{1}{\lambda_n} = o(1). \tag{6}
\]

Звідси отримуємо, що для \(m_j = \max\{n : \lambda_n < r_j\} \) виконується \(r_j / \lambda_{m_j+1} \to 0 \) і \(\lambda_{m_j} / r_j \to 0 \) (\(j \to +\infty \)). Не змінюючи загальність, вважаємо, що \(r_j / \lambda_{m_j+1} \leq \frac{1}{2} \) і \(\lambda_{m_j} / r_j \leq \frac{1}{2} \) (\(j \geq 1 \)).

Тоді для всіх \(n \leq m_j \)

\[
c_n(r_j) = \ln \left(1 + \frac{2\lambda_n}{r_j - \lambda_n} \right) \leq \frac{2\lambda_n}{r_j \left(1 - \frac{\lambda_n}{r_j} \right)} \leq 4 \frac{\lambda_n}{r_j},
\]

як і в (5).
а для всіх \(n \geq m_j + 1 \)

\[
d_n(r_j) = \ln\left(1 + \frac{2r_j}{\lambda_n - r_j}\right) \leq \frac{2r_j}{\lambda_n \left(1 - \frac{r_j}{\lambda_n}\right)} \leq 4 \frac{r_j}{\lambda_n},
\]

tому згідно з (6)

\[
\Pi_1(r_j) + \Pi_2(r_j) \leq 4\left(\frac{1}{r_j} \sum_{\lambda_n < r_j} \lambda_n + r_j \sum_{\lambda_n > r_j} \frac{1}{\lambda_n}\right) = o(1) \quad (r_j \to +\infty),
\]

і достанність умови (5) доведено.

Припустимо тепер, що \(r_j \uparrow +\infty \) послідовність, для якої

\[
\Pi_1(r_j) + \Pi_2(r_j) = o(1) \quad (r_j \to +\infty). \tag{7}
\]

Тоді \(c_n(r_j) = o(1) \quad (r_j \to +\infty) \) для кожного \(n \leq m_j \) і \(d_n(r_j) = o(1) \quad (r_j \to +\infty) \) для кожного \(n \geq m_j + 1 \). Звідси отримуємо, що для \(n \leq m_j \)

\[
\hat{c}_n \overset{\text{def}}{=} \frac{2\lambda_n}{r_j - \lambda_n} = o(1) \quad (r_j \to +\infty),
\]

і для \(n \geq m_j + 1 \)

\[
\hat{d}_n \overset{\text{def}}{=} \frac{2r_j}{\lambda_n - r_j} = o(1) \quad (r_j \to +\infty).
\]

Не зменшуючи загальності, вважаємо, що \(\hat{c}_n \leq 1/2, \hat{d}_n \leq 1/2 \). Тому, використовуючи нерівності \(\ln(1 + x) \geq 2x/3 \) \((0 \leq x \leq 1/2)\), \(\frac{\lambda_n}{r_j - \lambda_n} \geq \frac{\lambda_n}{r_j} \) і \(\frac{r_j}{\lambda_n - r_j} \geq \frac{r_j}{\lambda_n} \), отримуємо

\[
\frac{4}{3} \left(\sum_{\lambda_n < r_j} \frac{\lambda_n}{r_j} + \sum_{\lambda_n > r_j} \frac{r_j}{\lambda_n}\right) \leq \Pi_1(r_j) + \Pi_2(r_j).
\]

Звідси, згідно з (7), бачимо, що виконується умова (5).

Необхідність умови (5), а з нею і теорему повністю доведено.

Наведемо один наслідок з теореми.

Наслідок. Якщо \(\lambda_{n+1}/\lambda_n \geq q > 1 \) \((n \geq n_0)\), то для того, щоб для функції \(f \in Z(\lambda) \) справжджувалася рівність (4) досить, а у випадку, коли \(a_n = \lambda_n \) \((n \geq 1)\) і необхідно, щоб

\[
\lim_{n \to +\infty} \frac{\lambda_{n+1}}{\lambda_n} = +\infty. \tag{8}
\]

Доведення. Необхідність умови (8) отримуємо негайно з того, що \(\frac{\lambda_m}{r_j} \geq \frac{\lambda_{m_j}}{\lambda_{m_j+1}} \), де \(m_j \) і \(r_j \) визначено у доведенні теореми.
Для доведення достатності умови (8) припустимо, не зменшуючи загальність міркувань, що \(\lambda_{n+1}/\lambda_n \geq q > 1 \) (\(n \geq 1 \)). Тому \(\lambda_m \geq \lambda_p q^{m-p} \) (1 \(\leq p \leq m \)) і, отже у випадку, коли послідовність \(m_j \to +\infty \) така, що \(\lambda_{m_j}/\lambda_{m_j+1} = o(1) \) (\(j \to +\infty \)), а \(r_j = \sqrt[+\infty]{\lambda_{m_j} \lambda_{m_j+1}} \) негайно отримуємо

\[
\frac{1}{r_j} \sum_{k=1}^{m_j} \lambda_k + r_j \sum_{k=m_j+1}^{\infty} \frac{1}{\lambda_k} \leq \frac{\lambda_{m_j}}{r_j} \sum_{k=1}^{m_j} \frac{q^{k-m_j}}{\lambda_{m_j+1}} + \sum_{k=m_j+1}^{+\infty} \frac{r_j}{q^{m_j+1-k}} \\
\leq \sqrt[+\infty]{\frac{\lambda_{m_j}}{\lambda_{m_j+1}}} \frac{2q}{q-1} = o(1) \quad (j \to +\infty),
\]

тобто виконується умова (5).

Відзначимо також, що у випадку, коли виконується умова

\[
\lim_{r \to +\infty} \frac{N_\lambda(r)}{\ln^2 r} = 0, \quad N_\lambda(r) = \int_0^r \frac{n_\lambda(t)}{t} dt, \quad n_\lambda(t) = \sum_{0 < \lambda_n \leq t} 1,
\]

то виконується (8). Навпаки ж не вірно. Більше того, для кожного \(\sigma > 0 \) існує послідовність \(\lambda = (\lambda_n) \) така, що одночасно

\[
\lim_{r \to +\infty} \frac{N_\lambda(r)}{\ln^2 r} = \sigma, \quad \lim_{r \to +\infty} \frac{r}{\ln^2 r} \int_r^{+\infty} \frac{N_\lambda(t)}{t^2} dt = \sigma, \quad (9)
\]

\[
\frac{\lambda_{n+1}}{\lambda_n} \geq q > 1 \quad (n \geq 1), \quad \lim_{r \to +\infty} \frac{\lambda_{n+1}}{\lambda_n} = +\infty.
\]

Справді, нехай \(\tilde{\lambda} = (\tilde{\lambda}_n) \) наступна послідовність \(\tilde{\lambda}_n = q^n, q = e^{\frac{1}{2\sigma}}, \sigma > 0 \). Тоді

\[
\lim_{t \to +\infty} \frac{n_{\tilde{\lambda}}(t)}{\ln t} = 2\sigma
\]

і, отже, для \(\tilde{\lambda} \) є правильними рівності (9).

Виберемо тепер послідовності \(n_k = 2^{k+1} (k \geq \max\{[q]+1,2\}) \) та \(m_k = \min\{m : \tilde{\lambda}_m \geq k\tilde{\lambda}_{n_k}\} \). Нехай послідовність \(\lambda \) вибрана з умови

\[
\lambda = \{\lambda_n : n \geq 1\} = (\{k\tilde{\lambda}_{n_k}\} \cup \{\tilde{\lambda}_n\}) \setminus \{\tilde{\lambda}_n : n_k + 1 \leq n \leq m_k\}.
\]

Позаяк \(\tilde{\lambda}_{n+1} = q\tilde{\lambda}_n \) (\(n \geq 1 \) і

\[
\frac{k\tilde{\lambda}_{n_k}}{\tilde{\lambda}_{n_k}} = k \geq [q] + 1 > 1, \quad \frac{\tilde{\lambda}_{m_k+1}}{k\tilde{\lambda}_{n_k}} \geq \frac{\tilde{\lambda}_{m_k+1}}{\tilde{\lambda}_{m_k}} = q,
\]

то \(\lambda_{n+1}/\lambda_n \geq q > 1 \) (\(n \geq 1 \)), а також \(\lim_{n \to +\infty} \lambda_{n+1}/\lambda_n = +\infty \). Далі, очевидно, що

\[
n_\lambda(t) \leq n_{\tilde{\lambda}}(t) \quad (t > 0),
\]

(11)
крім цього при \(k \geq \max\{[q] + 1, 2\} \) \(\overset{\text{def}}{=} k_0 \) і \(t \in [\tilde{\lambda}_{n_h}, \tilde{\lambda}_{n_{k+1}}) \)

\[
n(\lambda)(t) \geq n(\tilde{\lambda})(t) - \sum_{s=\tilde{k_0}}^{k} (m_s - n_s).
\]

Зазначимо, що

\[
\tilde{\lambda}_{m_s} = (e^{\frac{1}{\sigma}})^{m_s} \geq s\tilde{\lambda}_{n_s} = s(e^{\frac{1}{\sigma}})^{n_s},
\]

тобто \(m_s \geq 2\sigma \ln s + n_s, \) враховуючи, що \(m_s \) є найменшим можливим, то \(m_s = n_s + [2\sigma \ln s] \), тому для \(t \in [\tilde{\lambda}_{n_h}, \tilde{\lambda}_{n_{k+1}}) \)

\[
n(\lambda)(t) \geq n(\tilde{\lambda})(t) - \sum_{s=\tilde{k_0}}^{k} [2\sigma \ln s]. \tag{12}
\]

Оскільки \(\sum_{s=\tilde{k_0}}^{k} [2\sigma \ln s] \sim 2\sigma k \ln k \) \((k \to +\infty) \) та \(n(\tilde{\lambda})(t) \geq n_k = 2^{2^k} \) при \(t \geq \lambda_{n_h} \), то з (11) і (12) отримуємо

\[
n(\lambda)(t) = (1 + o(1))n(\tilde{\lambda})(t) \quad (t \to +\infty),
\]

а отже, \(N(\lambda)(t) = (1 + o(1))N(\tilde{\lambda})(t) \quad (t \to +\infty) \).

Звідки отримуємо, що для послідовності \(\lambda \) виконуються умови (8)–(10) і \(\lambda_{n+1}/\lambda_n \geq q > 1 \) \((n \geq 1) \).

\[\text{Література}\]

O. B. Skaskiv, I. E. Chyzhykov, On the minimum modulus of an entire function of zero genus.

Let $f(z) = \prod_{n=1}^{+\infty} (1 - z/a_n)$ be an entire function of zero genus. We prove that in order to $\lim_{r \to +\infty} m_f(r)/M_f(r) = 1$, where $M_f(r) = \max\{|f(z)| : |z| = r\}$, $m_f(r) = \min\{|f(z)| : |z| = r\}$, it is sufficient and in the case when $a_n > 0$ ($n \geq 1$) is necessary that

$$\lim_{r \to +\infty} \left(\frac{1}{r} \sum_{|a_n| \leq r} |a_n| + r \sum_{|a_n| > r} \frac{1}{|a_n|} \right) = 0.$$

Key words: entire function, minimum modulus, zero order.