Growth and Representation of Analytic and Harmonic Functions in the Unit Disc

IHOR CHYZHYKOV

(Presented by M. M. Sheremeta)

Abstract. Let \(u(z) \) be harmonic in \(\{|z| < 1\} \), \(\alpha \geq 0 \), \(0 < \gamma \leq 1 \). Let \(B(r,u) = \max \{ u(z) : |z| \leq r \} \), \(\omega(\delta, \psi) \) be the modulus of continuity of a function \(\psi \) defined on \([0, 2\pi]\). We prove that \(u(z) \) has the form

\[
u(re^{i\varphi}) = \frac{1}{2\pi} \int_0^{2\pi} P_\alpha(r, \varphi - t) \, d\psi(t),\]

where \(\psi \in BV[0, 2\pi] \) and \(\omega(\delta, \psi) = O(\delta^\gamma), \delta \downarrow 0 \), if and only if \(B(r,u) = O((1-r)^{\gamma-\alpha-1}), r \uparrow 1 \), and \(\sup_{0<r<1} \int_0^{2\pi} |u_\alpha(re^{i\varphi})| \, d\varphi < +\infty \). Here \(u_\alpha \) is the \(\alpha \)-fractional integral of \(u(re^{i\varphi}) \), \(P_\alpha(r,t) = \Gamma(1+\alpha) \Re(\frac{2}{(1-re^{it})^{\alpha+1}} - 1) \).

2000 MSC. 30E20, 20D50.

Key words and phrases. Analytic function, harmonic function, fractional integral, growth estimates.

1. Introduction and Main Results

1.1. Analytic Functions in the Unit Disc

Let \(D = \{ z \in \mathbb{C} : |z| < 1 \} \). Denote by \(A(D) \) the class of analytic functions in \(D \). For \(f \in A(D) \), let \(M(r,f) = \max \{|f(z)| : |z| = r\} \) be the maximum modulus, \(T(r,f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta, 0 < r < 1 \), the Nevanlinna characteristics, \(x^+ = \max\{x,0\} \).

Usually, the orders of the growth of analytic functions in \(D \) are defined by

\[
\rho_M[f] = \limsup_{r \uparrow 1} \frac{\log^+ \log^+ M(r,f)}{-\log(1-r)}, \quad \rho_T[f] = \limsup_{r \uparrow 1} \frac{\log^+ T(r,f)}{-\log(1-r)}.
\]

Received 5.08.2004
It is well known that
\[\rho_T[f] \leq \rho_M[f] \leq \rho_T[f] + 1, \quad (1.1) \]
and all cases are possible. This is in contrast to entire functions where the corresponding orders are equal. We recall a couple of results concerning (1.1).

Given \(\alpha > 1 \) and \(\rho \) satisfying \(\rho \leq \alpha \leq \rho + 1 \), C. N. Linden [6] constructed an analytic function in \(\overline{D} \setminus \{1\} \) of the form of the so-called Naftalevich–Tsuji product,
\[g(z) = \prod_{n=1}^{\infty} E\left(\frac{1 - |a_n|^2}{1 - a_nz}, p\right), \quad \sum_n (1 - |a_n|)^{p+1} < \infty, \]
with the property that \(\rho_T[g] = \rho, \rho_M[g] = \alpha \). Here
\[E(w, p) = (1 - w) \exp\{w + w^2/2 + \cdots + w^p/p\}, \quad p \in \mathbb{Z}_+, \]
is the Weierstrass primary factor, \(a_n \) are the zeros of \(g(z) \).

Another approach is used in the paper by M. Sheremeta [9] where, in particular, for given \(\alpha > 0 \), a class of analytic functions \(f \) represented by gap series (with Hadamard’s gaps) is extracted such that
\[
\int_0^1 (1 - r)^{1+\alpha} T(r, f) \, dr < +\infty \Leftrightarrow \int_0^1 (1 - r)^{1+\alpha} \log M(r, f) \, dr < +\infty.
\]

Prof. O. Skaskiv posed the following problem.

Problem 1.1. Given \(0 \leq \rho \leq \alpha \leq \rho + 1 \), describe the class of analytic function in \(D \) such that \(\rho_T[f] = \rho, \rho_M[f] = \alpha \).

In order to solve Problem 1.1 one needs a parametric representation of functions that are analytic in \(D \) and have finite order of growth. Such a representation was obtained [1] in 1960th by M. M. Djrbashian using the Riemann–Liouville fractional integral.

For \(\alpha > 0 \), consider two subclasses of \(A(D) \),
\[A_\alpha : \sup_{0 < r < 1} \int_0^{2\pi} \left(\int_0^{r} (r - t)^{\alpha-1} \log |f(te^{i\varphi})| \, dt \right) d\varphi < +\infty, \]
\[A_\alpha^* : \sup_{0 < r < 1} \int_0^{2\pi} \left(\int_0^{r} (r - t)^{\alpha-1} \log^+ |f(te^{i\varphi})| \, dt \right) d\varphi < +\infty. \]
Obviously, \(A^*_\alpha \subset A_\alpha \). Note that \(f \in A^*_\alpha \) means that \(\int_0^1 T(t, f)(1 - t)^{\alpha - 1} dt < +\infty \), i.e., \(f \) belongs to the convergence class of order \(\alpha \).

Throughout this paper, \((1 - w)^\alpha, w \in D, \alpha \in \mathbb{R}\), means the branch of the power function such that \((1 - w)^\alpha \big|_{w=0} = 1 \).

Theorem A. The class \(A_\alpha \) coincides with the class of functions represented in the form

\[
f(z) = C_\lambda z^\lambda B_\alpha(z) \exp \left\{ \frac{2\pi}{\int_0^\infty \frac{d\psi(\theta)}{(1 - e^{-i\theta}z)^{\alpha+1}}} \right\}
\]

\[\equiv C_\lambda z^\lambda B_\alpha(z) \exp \{g_\alpha(z)\}, \quad (1.2)\]

where \(\psi \in BV[0, 2\pi] \), \((z_k)\) is a sequence of zeros of \(f(z) \) such that \(\sum_k (1 - |z_k|)^{\alpha+1} < +\infty \); \(B_\alpha(z) = \prod_k (1 - \frac{z}{z_k}) \exp \{-W_\alpha(z, z_k)\} \) is a Djrbashian product,

\[
W_\alpha(z, \zeta) = \sum_k \frac{\Gamma(\alpha + k + 1)}{\Gamma(\alpha + 1)\Gamma(1 + k)} \times \left(\left(\frac{\bar{\zeta}z}{\zeta} \right)^k \int_0^{1 - x^{\alpha + 1}} dx \right) \left(\frac{\bar{\zeta}z}{\zeta} \right)^k \int_0^{1 - x^{\alpha + 1}} dx \right) .
\]

In this paper, we will restrict the considerations to the case where \(f(z) \) has no zeros and has a finite order of growth. Then \(f(z) = C_\alpha \exp \{g_\alpha(z)\} \) for some \(\alpha \geq 0 \).

Radial and non-tangential limits of \(g_\alpha(z) \) were investigated in many papers, e.g., D. J. Hallenbeck, T. H. MacGregor [2, 3], and M. M. Sheremeta [10], even for complex-valued functions \(\psi \) of bounded variation. It turns out that \(g_\alpha(z) \) admits the above estimates in terms of the modulus of continuity of \(\psi \). We cite a typical result [10].

Let \(S(\theta, \gamma) \) be the closed Stolz angle having the vertex at \(e^{i\theta} \) and the opening \(\gamma \), i.e., \(S(\theta, \gamma) = \{z \in D : |\arg(e^{i\theta} - z)| < \gamma/2\} \). A function \(g \) defined in \(D \) is said to have a nontangential limit at \(e^{i\theta} \) provided that \(\lim_{z \to e^{i\theta}, z \in S(\theta, \gamma)} g(z) \) exists for every \(\gamma \in (0, \pi) \).

Theorem B. Let \(\alpha > -1, \theta \in [0, 2\pi], \psi \in BV[0, 2\pi], \) and \(\omega \) be a nonnegative, increasing continuous, semi-additive function on \([0, +\infty)\), and \(\omega(0) = 0 \). If

\[
\int_0^1 t^{-\alpha - 2}\omega(t) \, dt = \infty, \quad |\psi(t) - \psi(\theta)| = o(\omega(|t - \theta|)), \quad t \to \theta,
\]
and \(g_\alpha \) is given by (1.2), then
\[
|g_\alpha(z)| = \frac{1}{|1-ze^{-i\theta}|} \int_0^1 t^{-\alpha-2}\omega(t) \, dt
\]
has a nontangential limit zero at \(e^{i\theta} \).

Since lower estimates for \(|g_\alpha(z)| \) are known only in particular cases (see [5], Theorem D and Remark 1.3 below), it is interesting to obtain results which give lower estimates for \(|g_\alpha(z)| \) in the general situation.

The main purpose of this paper is to describe the growth of \(|g_\alpha(z)| \) in terms of the modulus of continuity for \(\psi \) and find counterparts for harmonic functions in \(D \).

Problem 1.1 is not solved, but Theorem 3.3 and the corollary describe large classes of analytic functions \(f \) with the property \(\rho_T[f] = \rho, \rho_M[f] = \alpha, 0 \leq \rho \leq \alpha \leq \rho + 1 \). Theorem 3.2 yields asymptotic formulas for \(g_\alpha \) in Stolz angles when \(\psi \) is not continuous.

1.2. Representation and Growth of Harmonic Functions

We need to make some definitions. Let \(U_\theta(\delta) = \{ x \in [0, 2\pi] : |x - \theta| < \delta \}, \delta > 0 \). For \(\psi : [0, 2\pi] \to \mathbb{R} \), define the moduli of continuity by \(\omega(\delta, \theta; \psi) = \sup \{|\psi(x) - \psi(y)| : x, y \in U_\theta(\delta)\} \), \(\omega(\delta; \psi) = \sup_{\theta \in [0, 2\pi]} \omega(\delta, \theta; \psi) \).

Following [12] we say that \(\psi \in \Lambda_\gamma \) if \(\omega(\delta; f) = O(\delta^\gamma) (\delta \downarrow 0) \).

The fractional integral of order \(\alpha > 0 \) for \(h : (0, 1) \to \mathbb{R} \) is defined by the formulas [1]
\[
D^{-\alpha}h(r) = \frac{1}{\Gamma(\alpha)} \int_0^r (r-x)^{\alpha-1}h(x) \, dx,
\]
\[
D^0h(r) \equiv h(r), \quad D^\alpha h(r) = \frac{d^p}{dr^p} \{D^{-(p-\alpha)}h(r)\}, \quad \alpha \in (p-1; p], \ p \in \mathbb{N}.
\]

Let \(H(D) \) be the class of harmonic functions on \(D \). We put \(u_\alpha(re^{i\varphi}) = r^{-\alpha}D^{-\alpha}u(re^{i\varphi}) \), where the fractional integral is taken with respect to the variable \(r \). We define \(B(r, u) = \max\{u(z) : |z| \leq r\} \) for a subharmonic function \(u \) on \(D \).

Let
\[
S_\alpha(z) = \Gamma(1+\alpha)\left(\frac{2}{1-\alpha+1} - 1\right), \quad P_\alpha(r, t) = \Re S_\alpha(re^{it}).
\]
Remark 1.1. Note that $S_0(z)$ is the Schwartz kernel, $P_0(r,t)$ is the Poisson kernel; $P_\alpha(r,t) = D^\alpha(r^\alpha P_0(r,t))$.

Our starting point is the following two theorems.

Theorem C (M. Djrbashian). Let $u \in H(D)$, $\alpha > -1$. Then

$$u(re^{i\varphi}) = \int_0^{2\pi} P_\alpha(r, \varphi - \theta) d\psi(\theta),$$

(1.3)

where $\psi \in BV[0, 2\pi]$ if and only if

$$\sup_{0 < r < 1} \int_0^{2\pi} |u_\alpha(re^{i\varphi})| d\varphi < +\infty.$$

Remark 1.2. Actually, for $\alpha = 0$, it is a classical result of Nevanlinna on representation of $\log |F(z)|$ if F belongs to the Nevanlinna class N.

Theorem D (Hardy–Littlewood). Let $u \in H(D)$, $0 < \gamma \leq 1$. Then

$$u(re^{i\varphi}) = \int_0^{2\pi} P_0(r, \varphi - t)v(t) dt$$

(1.4)

for some function $v \in \Lambda_\gamma$ if and only if

$$B\left(r, \frac{\partial u}{\partial \varphi}\right) = O((1 - r)^{\gamma - 1}), \quad r \uparrow 1.$$

Remark 1.3. Theorem D was originally proved in [4] for analytic functions (cf. Theorem 1.2).

Applying methods of proofs of Theorems B and C, we prove the following theorem which describes the growth of functions of form (1.3).

Theorem 1.1. Let $u \in H(D)$, $\alpha \geq 0$, $0 < \gamma < 1$. Then $u(z)$ has form (1.3), where ψ is a function of bounded variation on $[0, 2\pi]$ and $\psi \in \Lambda_\gamma$, if and only if

$$B(r, u) = O((1 - r)^{\gamma - \alpha - 1}), \quad r \uparrow 1,$$

and

$$\sup_{0 < r < 1} \int_0^{2\pi} |u_\alpha(re^{i\varphi})| d\varphi < +\infty.$$
Note that Theorem D corresponds to the case where ψ is absolutely continuous, but Theorem 1.1 describes a general situation.

Similar to the way Theorem 1.1 was deduced from the proposition below, one can obtain the following generalization of Theorem D.

Theorem 1.2. Let $u \in H(D)$, $0 < \gamma < 1$, $\alpha \geq 0$. Then

$$u(re^{i\varphi}) = \int_0^{2\pi} P_\alpha(r, \varphi - t)v(t) dt$$

for some function $v \in \Lambda_\gamma$ if and only if

$$B(r, \frac{\partial u}{\partial \varphi}) = O((1 - r)^{\gamma - \alpha - 1}), \quad r \uparrow 1.$$

It is not difficult to prove a counterpart of the last theorem for analytic functions.

Remark 1.4. Similarly to [10], one can prove that if $u(z)$ is represented by (1.3), then

$$u(re^{i\vartheta}) = O\left(\int_{1-r}^{2\pi} \omega(\tau, \varphi; \psi) d\tau\right), \quad r \uparrow 1, \quad re^{i\vartheta} \in S(\varphi, \tau), \quad 0 \leq \tau < \pi.$$

Problem 1.2. To obtain necessary and sufficient conditions for local growth of $u \in H(D)$.

2. Proof of Theorem 1.1

2.1. The Case $\alpha = 0$.

First, let us prove an important particular case of Theorem 1.1, in spirit of Theorem D.

Proposition 2.1. Let $u \in H(D)$, $0 < \gamma \leq 1$. Then $u(z)$ has the form

$$u(re^{i\varphi}) = \int_0^{2\pi} P_0(r, \varphi - t) d\psi(t), \quad (2.1)$$

where ψ has bounded variation on $[0, 2\pi]$ and $\psi \in \Lambda_\gamma$, if and only if

$$B(r, u) = O((1 - r)^{\gamma - 1}), \quad r \uparrow 1,$$

and

$$\sup_{0<r<1} \int_0^{2\pi} |u(re^{i\varphi})| d\varphi < +\infty.$$
In the sequel, the symbol C with indices stands for some positive constants.

Proof of Proposition 2.1. First, we consider the case $\gamma = 1$. Note that the class Λ_1 consists of functions that are integrals of bounded functions. Thus it is sufficient to apply Theorem (6.3) [12, Ch. IV] which states that (1.4) holds if and only if $B(r, u)$ is bounded as $r \uparrow 1$.

Consider the case $\gamma \in (0, 1)$.

Necessity. The proof of necessity is standard (cf. [11, Ch. 8.2], [10]).

The following estimates of $P_0(r, t)$ are well known:

\[
|\frac{\partial}{\partial t} P_0(r, t)| \leq \frac{2}{(1-r)^2}, \quad |\frac{\partial}{\partial t} P_0(r, t)| \leq \frac{\pi^2}{t^2}, \quad r \geq \frac{1}{2}, \quad |t| \leq \pi.
\] (2.2)

We extend ψ to \mathbb{R} by the formula
\[
\psi(t + 2\pi) - \psi(t) = \psi(2\pi) - \psi(0).
\]

Since $P_0(r, t)$ is a periodic and even function in t, we have

\[
u(re^{i\varphi}) = \int_{-\pi+\varphi}^{\pi+\varphi} P_0(r, \theta - \varphi) d(\psi(\theta) - \psi(\varphi))
\]

\[
= (\psi(\theta) - \psi(\varphi)) P_0(r, \theta - \varphi) |_{-\pi+\varphi}^{\pi+\varphi} - \int_{-\pi+\varphi}^{\pi+\varphi} \frac{\partial}{\partial \theta} (P_0(r, \theta - \varphi)) (\psi(\theta) - \psi(\varphi)) d\theta
\]

\[
= (\psi(2\pi) - \psi(0)) P_0(r, \pi) - \int_{-\pi}^{\pi} \frac{\partial}{\partial \tau} (P_0(r, \tau)) (\psi(\tau + \varphi) - \psi(\varphi)) d\tau.
\]

Hence, using (2.2), we obtain

\[
|u(re^{i\varphi})| \leq \frac{C_1(\psi)(1-r)}{1+r} + \left(\int_{|\tau| \leq 1-r} + \int_{1-r \leq |\tau| \leq \pi} \right) \left| \frac{\partial}{\partial \tau} P_0(r, \tau) \right| |\omega(|\tau|, \psi; \varphi)| d\tau
\]

\[
\leq o(1) + 2 \int_{|\tau| \leq 1-r} \frac{\omega(|\tau|, \psi; \varphi)}{(1-r)^2} d\tau + \int_{1-r \leq |\tau| \leq \pi} \frac{\pi^2}{\tau^2} |\omega(|\tau|, \psi; \varphi)| d\tau
\]

\[
\leq o(1) + 4 \frac{\omega(1-r, \psi; \varphi)}{1-r} + 2\pi \int_{1-r \leq \tau \leq \pi} \frac{\omega(\tau, \psi; \varphi)}{\tau^2} d\tau
\]

\[
\leq (2\pi^2 + 4) \int_{1-r \leq \tau \leq \pi} \frac{\omega(\tau, \psi; \varphi)}{\tau^2} d\tau + O(1), \quad r \uparrow 1.
\] (2.3)
Here, we used that the modulus of continuity is increasing. Since $\psi \in \Lambda_\gamma$, $\omega(\tau, \psi; \varphi) = O(\tau^\gamma)$ as $\tau \downarrow 0$. Thus, (2.3) yields

$$B(r, u) \leq C_2(\gamma)(1 - r)^{\gamma - 1}, \quad r \uparrow 1.$$

Sufficiency. Let $u(re^{i\varphi})$ be harmonic for $r < 1$, and $\int_0^{2\pi} |u(re^{i\varphi})| d\varphi \leq C_3$.

Remark 2.1. By Theorem C, we have (2.1), where $\psi \in BV[0, 2\pi]$, and one can take ψ such that at any point θ of continuity of ψ,

$$\psi(\theta) = \lim_{r_n \uparrow 1} \int_0^{\theta} u(r_n e^{i\varphi}) d\varphi \quad (2.4)$$

for some sequence (r_n) ([1], [7, p. 57]).

Let $F(z)$ be an analytic function on D_1 such that $\Re F(z) = u(z)$. By the theorem of Zygmund [12, Th. (2.30), Ch. VII], $B(r, u) = O((1 - r)^{\gamma - 1})$ implies that $M(r, F) = O((1 - r)^{\gamma - 1})$ as $r \uparrow 1$.

Define the analytic function $\Phi(z) = \int_z^z F(\zeta) d\zeta$, $z \in D$. For any fixed $\varphi \in [0, 2\pi]$ and $0 < r' < r'' < 1$, we have

$$|\Phi(r'' e^{i\varphi}) - \Phi(r' e^{i\varphi})| = \left| \int_{r'}^{r''} F(\rho e^{i\varphi}) e^{i\varphi} d\rho \right|$$

$$\leq C_4 \int_{r'}^{r''} (1 - \rho)^{\gamma - 1} d\rho \leq \frac{C_4}{\gamma} (1 - r')^{1 - \gamma}.$$

Therefore, by Cauchy’s criterion, $\lim_{r \uparrow 1} \Phi(r e^{i\varphi}) \equiv \Phi(e^{i\varphi})$ exists uniformly in φ. Consequently, $\tilde{\Phi}(\varphi) \equiv \Phi(e^{i\varphi})$ is a continuous function on $[0, 2\pi]$.

Let us prove that $\tilde{\Phi} \in \Lambda_\gamma$. Let $h \in (0, 1)$, $z_0 = e^{i\varphi}$, $z_1 = (1 - h)e^{i\varphi}$, $z_2 = (1 - h)e^{i(\varphi + h)}$, $z_3 = e^{i(\varphi + h)}$.

Then, by Cauchy’s theorem,

$$\Phi(z_3) - \Phi(z_0) = \int_{[0, z_3]} F(z) \, dz + \int_{[z_0, 0]} F(z) \, dz$$

$$= \left(\int_{[z_0, z_1]} + \int_{z_1}^{z_3} \right) F(z) \, dz.$$
For sufficiently small \(h > 0 \), we have
\[
\left| \int_{[z_0, z_1]} F(z) \, dz \right| \leq \int_{1-r}^{1} \frac{C_4}{(1-h)^{1-\gamma}} \, dr = \frac{C_4 h^{\gamma}}{\gamma}.
\]

Similarly, \(\left| \int_{[z_2, z_3]} F(z) \, dz \right| \leq \frac{C_4}{\gamma} h^{\gamma} \). It is obvious that \(\left| \int_{z_1}^{z_2} F(z) \, dz \right| \leq C_4 h^{\gamma} \).

Therefore, \(\left| \Phi(e^{i(\varphi+h)}) - \Phi(e^{i\varphi}) \right| \leq C_4 (\frac{2}{\gamma} + 1) h^{\gamma} \), so \(\tilde{\Phi} \in \Lambda_\gamma \).

2.2. The Case \(\alpha > 0 \).

Necessity. Let \(u \) have form (1.3), where \(\psi \in BV[0, 2\pi] \cap \Lambda_\gamma \). This implies
\[
u_{\alpha}(r e^{i\varphi}) = \int_{\varphi}^{\varphi + 2\pi} P_0(r, \varphi - \theta) \, d\psi(\theta).
\] (2.5)

By the proposition we have \(\sup_{r<1} \int_{0}^{2\pi} \left| u_{\alpha}(re^{i\varphi}) \right| \, d\varphi < +\infty \) and \(B(r, u_{\alpha}) = O((1-r)^{\gamma-1}) \) as \(r \uparrow 1 \).
We use the following formula [1, Chap. IX, (2.9)]:

\[
u(re^{i\varphi}) = \frac{1}{2\pi} \int_0^{2\pi} P_\alpha(r/\rho, \varphi - \theta) u_\alpha(\rho e^{i\theta}) d\theta, \quad 0 \leq r < \rho < 1.\]

Taking \(\rho = (1 + r)/2 \) and using the estimate \(B(r, u_\alpha) = O((1 - r)^{\gamma - 1}) \) \((r \uparrow 1)\) we obtain

\[
|u(re^{i\varphi})| = O \left(\int_0^{2\pi} \frac{(1 - \rho)^{\gamma - 1} d\theta}{|1 - \frac{r}{\rho} e^{i(\varphi - \theta)}|^{1+\alpha}} \right)
= O((1 - r)^{\gamma - 1}(\rho - r)^{-\alpha}) = O((1 - r)^{\gamma - 1 - \alpha}), \quad r \uparrow 1.
\]

The necessity is proved.

Sufficiency. Let \(\int_0^{2\pi} |u_\alpha(re^{i\varphi})| d\varphi < +\infty \) uniformly for all \(r \in (0, 1) \). Then, by Theorem C, we have (2.5), where \(\psi \in BV[0, 2\pi] \).

We need the following elementary lemma.

Lemma 2.1. Let, for all \(x \in [0, 1), f \in L[0, x], \) and \(0 \leq \eta < \beta, |f(x)| = O((1 - x)^{-\beta}) \) as \(x \uparrow 1 \). Then \(|D^{-\eta}f(x)| = O((1 - x)^{\eta - \beta}) \) as \(x \uparrow 1 \).

Proof. Using the definition of the fractional integral and standard estimates we obtain

\[
|D^{-\eta}f(x)| = \left| \frac{1}{\Gamma(\eta)} \int_0^x f(t)(x-t)^{\eta-1} dt \right|
= O \left(\int_0^x \frac{(x-t)^{\eta-1}}{(1-t)^{\beta}} dt \right)
= O \left(\int_0^{x-2(1-x)} (1-t)^{\eta-1} dt + \int_{x-2(1-x)}^x \frac{dt}{(1-t)^{\beta}} \right)
= O((1 - x)^{\eta - \beta}), \quad x \uparrow 1.
\]

The lemma is proved. \(\square \)

Since \(B(r, u) = O((1 - r)^{\gamma - 1 - \alpha}) \) as \(r \uparrow 1 \), by the lemma we have that \(B(r, u_\alpha) = O((1 - r)^{\gamma - 1}) \) as \(r \uparrow 1 \). Therefore, by Proposition 2.1, \(\psi \in \Lambda_\gamma \).
3. Further Results on Analytic Functions

There is an analogue of Theorem C for analytic functions proved by M. Djrbashian [1]. The following theorem can be proved in the same way as the proposition and Theorem 1.1.

Theorem 3.1. Let \(f(z) \) be an analytic function on \(D, \alpha \geq 0, 0 < \gamma < 1 \). Then \(f(z) \) has the form

\[
f(re^{i\varphi}) = \int_0^{2\pi} S_\alpha(r, \varphi - t) d\psi(t) + i\Im f(0),
\]

where \(\psi \) has bounded variation on \([0, 2\pi]\) and \(\psi \in \Lambda_\gamma \), if and only if

\[
B(r, |f|) = O((1-r)^{\gamma - \alpha - 1}), \quad r \uparrow 1,
\]

and

\[
\sup_{0 < r < 1} \int_0^{2\pi} |\Re f_\alpha(re^{i\varphi})| d\varphi < +\infty,
\]

where \(f_\alpha(re^{it}) = r^{-\alpha}D^{-\alpha}f(re^{it}) \).

Theorem 1.1 does not cover the case where \(\psi \in \Lambda_0 \), in particular, where \(\psi \) is not continuous. Here, following [10], we are able to prove a more precise result. It seems to be known, but I have not found it in the literature.

Theorem 3.2. Let \(f(z) \) have the form

\[
f(z) = \int_0^{2\pi} (1-ze^{-it})^{-\alpha} d\psi(t), \quad z \in D,
\]

where \(\alpha > 0, \psi \in BV[0, 2\pi] \). If \(\{t_k\} \) is the set of discontinuity points of \(\psi \) with jumps \(\{h_k\} \), then

\[
f(z) = \frac{h_k + o(1)}{(1-ze^{-it_k})^\alpha}, \quad z \to e^{it_k}, \quad z \in S(t_k, \tau), \quad \tau \in [0, \pi),
\]

and

\[
f(z) = \frac{o(1)}{(1-ze^{-it})^\alpha}, \quad z \to e^{it}, \quad z \in S(t, \tau), \quad t \notin \{t_k\}, \quad \tau \in [0, \pi).
\]
Proof. Since $\psi \in BV[0, 2\pi]$, the set $\{t_k\}$ is at most countable. Without loss of generality we can assume that ψ is continuous from the right. Then $h_k = \psi(t_k) - \psi(t_k - 0)$. It is sufficient to prove (3.2) for $k = 1$.

We may assume that $t_1 \in (0, 2\pi)$. Let

$$H_1(t) = \begin{cases} 0, & 0 \leq t < t_1, \\ h_1, & t_1 \leq t \leq 2\pi. \end{cases}$$

We extend ψ to \mathbb{R} by the formula $\psi(t + 2\pi) = \psi(t)$, as well as H_1. The function $g(t) \overset{\text{def}}{=} \psi(t) - H_1(t)$ is continuous at the points $t = t_1 + 2\pi k$, $k \in \mathbb{Z}$, so $\omega(\delta, t_1, g) = o(1)$ as $\delta \downarrow 0$. We have

$$f(z) = \int_0^{2\pi} (1 - ze^{-it})^{-\alpha} \, dg(t) + \frac{h_1}{(1 - ze^{-it_1})^\alpha}. \quad (3.4)$$

Let $\omega_1(\delta) = \max\{\sqrt{\omega(\delta, t_1, g)}, \delta^{\alpha/2}\}$. It is easy to see that $\omega_1(\delta)$ satisfies the hypotheses of Theorem B on $\omega(\delta)$. Applying Theorem B to the integral in (3.4) we obtain (3.2) from (3.4).

Relationship (3.3) follows directly from Theorem B if we choose $\omega_2(\delta) = \max\{\sqrt{\omega(\delta, t, \psi)}, \delta^{\alpha/2}\}$. \qed

For $\psi \in BV[0, 2\pi]$, we define $\tau[\psi]$ to be $\sup \gamma$ satisfying $\psi \in \Lambda_\gamma$. In particular, $\omega(\delta, \psi) \in \Lambda_{\tau[\psi]-\varepsilon} \setminus \Lambda_{\tau[\psi]+\varepsilon}$.

Theorem 3.3. Let $F(z)$ be analytic in D,

$$\log |F(re^{i\varphi})| = \int_0^{2\pi} P_\alpha(r, \varphi - t) \, d\psi(t),$$

where $\psi \in BV[0, 2\pi]$, $\tau[\psi] = \tau \in [0, 1)$. Then $\rho_M[F] = \alpha + 1 - \tau$, $\rho_T[F] \leq \alpha$. If, in addition, ψ is not absolutely continuous, then $\rho_T[F] = \alpha$.

Corollary 3.1. Suppose that the conditions of Theorem 3.3 hold, and $\tau = 0$. Then $\rho_M[F] = \rho_T[F] + 1 = \alpha + 1$.

Proof of Theorem 3.3. First, let $\tau \in (0, 1)$. By Theorem 1.1,

$$\sup_{r < 1} \int_0^{2\pi} |u_\alpha(re^{i\varphi})| \, d\varphi < +\infty.$$

Since $\omega(\delta, \psi) \in \Lambda_{\tau-\varepsilon} \setminus \Lambda_{\tau+\varepsilon}$, $0 < \varepsilon \leq \min\{\tau, 1 - \tau\}$, by applying Theorem 1.1 again, we have

$$\log M(r, F) = B(r, \log |F|) = O((1 - r)^{\tau-\alpha-1-\varepsilon}),$$

where $B(r, \log |F|)$ is the integral of $|F|$ over D.
\[\log M(r, F) \neq O((1 - r)^{1-\alpha-1+\varepsilon}), \quad r \uparrow 1, \]
i.e., \(\rho_M[F] = \alpha + 1 - \tau. \)

Further,

\[
T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{1}{2\pi} \int_0^{2\pi} P_\alpha(r, \varphi - t) \, d\psi(t) \right) \, d\varphi \\
\leq \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} P_\alpha^+(r, \varphi - t) \, d\psi(t) \, d\varphi \\
\leq \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \frac{2}{|1 - re^{i\theta}|^{\alpha+1}} \, d\theta \\
= \begin{cases}
O((1 - r)^{-\alpha}), & \alpha > 0, \\
O\left(\log \frac{1}{1-r}\right), & \alpha = 0,
\end{cases} \quad r \uparrow 1,
\]
i.e., \(\rho_T[f] \leq \alpha. \)

In order to complete the proof of Theorem 3.3, we need the following result of F. A. Shamoian [8], which compares the classes \(A_\alpha \) and \(A^*_\alpha \).

Theorem E ([8, Theorem 3]). We have

\[F(z) = \exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} S_\alpha(ze^{-i\theta}) \, d\psi(\theta) \right\} \in A^*_\alpha \]

if and only if the following holds: 1) \(\psi \) is absolutely continuous;

2) \[\int_0^{2\pi} \int_0^{2\pi} \frac{\left| \psi(\theta + t) - 2\psi(\theta) + \psi(\theta - t) \right|}{t^2} \, dt \, d\theta < +\infty. \]

As we noted above, \(F \in A^*_\alpha \) if and only if \(T(r, F) \) belongs to the convergence class of order \(\alpha \). Therefore, if \(\psi \) is not absolutely continuous, \(F \) has growth at least as the divergence class of order \(\alpha \), i.e., \(\rho_T[F] \geq \alpha. \)

If \(\tau = 0 \), then one can deduce in a similar way that \(\rho_T[f] \leq \alpha. \) Since \(\omega(\delta; \psi) \not\in \Lambda_\varepsilon, \varepsilon > 0, \)

\[\log M(r, f) \neq O((1 - r)^{1-\alpha-1+\varepsilon}), \quad r \uparrow 1, \]
i.e., \(\rho_M[F] \geq \alpha + 1. \) Using the inequality \(\rho_M[F] \leq \rho_T[F] + 1 \), we obtain \(\rho_M[F] = \rho_T[F] + 1 = \alpha + 1, \) which is the statement of the corollary. \(\square \)
Remark 3.1. The condition $\tau < 1$ in Theorem 3.3 is essential. In fact, by the Cauchy theorem on residues,

$$\int_0^{2\pi} \frac{d\theta}{(1 - e^{-i\theta}z)^n} = 2\pi, \quad n \in \mathbb{N}, \ z \in D.$$

References

[8] F. A. Shamoian, Several remarks to parametric representation of Nevanlinna-Djrbashian’s classes // Mat. Zametki 52 (1992), N 1, 128–140.

Contact information

Ihor Chyzhykov
Department of Mechanics and Mathematics,
Lviv Ivan Franko National University,
Universytets’ka 1,
79000, Lviv
Ukraine
E-Mail: ichyzh@lviv.farlep.net